Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation

This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-04, Vol.33 (4)
Hauptverfasser: De Florio, Mario, Schiassi, Enrico, Ganapol, Barry D., Furfaro, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator De Florio, Mario
Schiassi, Enrico
Ganapol, Barry D.
Furfaro, Roberto
description This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.
doi_str_mv 10.1063/5.0046181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515884066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515884066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRSMEEqWw4AaWWIGUYsfJxGEHFRREJViUtWVsp0nbxMFOKV0gcQduyElwKIIFEqs_Gr3582eC4JDgAcFAT5MBxjEQRraCHsEsC1MA2O7qFIcAlOwGe87NMMY0i6AXvN4Xa1dKF5Z1bmylFar10oqFl3Zl7Nwh30ZWWJ2XWoVT4ZBa16LyI2doUmhbeVZarRuUL8wKlTVqC40uCtHWYirsx9v7yBrnvN5aY-ZINI01L2Ul2tLU-8FOLhZOH3xrP3i4upwMr8Px3ehmeD4OJY3SNkykjLMoIXEGlKY6yRgDSCnTUsQMR1lKIoojokBAijEBoYhgigIVyaOKYqD94Gjj63c_LbVr-cwsbe1Xcm-bMBZj6KjjDSW7xP5i3lgf1K45wbz7Lk_493c9e7JhnSzbr1t-4Gdjf0HeqPw_-K_zJ_kFio4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515884066</pqid></control><display><type>article</type><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</creator><creatorcontrib>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</creatorcontrib><description>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0046181</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Boltzmann transport equation ; Chebyshev approximation ; Constraints ; Fluid dynamics ; Functionals ; Machine learning ; Neural networks ; Physics ; Rarefied gas dynamics</subject><ispartof>Physics of fluids (1994), 2021-04, Vol.33 (4)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</citedby><cites>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</cites><orcidid>0000-0001-6076-8992 ; 0000-0002-9938-1426 ; 0000-0002-7882-5913 ; 0000-0003-2285-3074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>De Florio, Mario</creatorcontrib><creatorcontrib>Schiassi, Enrico</creatorcontrib><creatorcontrib>Ganapol, Barry D.</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><title>Physics of fluids (1994)</title><description>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Boltzmann transport equation</subject><subject>Chebyshev approximation</subject><subject>Constraints</subject><subject>Fluid dynamics</subject><subject>Functionals</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Rarefied gas dynamics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRSMEEqWw4AaWWIGUYsfJxGEHFRREJViUtWVsp0nbxMFOKV0gcQduyElwKIIFEqs_Gr3582eC4JDgAcFAT5MBxjEQRraCHsEsC1MA2O7qFIcAlOwGe87NMMY0i6AXvN4Xa1dKF5Z1bmylFar10oqFl3Zl7Nwh30ZWWJ2XWoVT4ZBa16LyI2doUmhbeVZarRuUL8wKlTVqC40uCtHWYirsx9v7yBrnvN5aY-ZINI01L2Ul2tLU-8FOLhZOH3xrP3i4upwMr8Px3ehmeD4OJY3SNkykjLMoIXEGlKY6yRgDSCnTUsQMR1lKIoojokBAijEBoYhgigIVyaOKYqD94Gjj63c_LbVr-cwsbe1Xcm-bMBZj6KjjDSW7xP5i3lgf1K45wbz7Lk_493c9e7JhnSzbr1t-4Gdjf0HeqPw_-K_zJ_kFio4</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>De Florio, Mario</creator><creator>Schiassi, Enrico</creator><creator>Ganapol, Barry D.</creator><creator>Furfaro, Roberto</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid><orcidid>https://orcid.org/0000-0002-9938-1426</orcidid><orcidid>https://orcid.org/0000-0002-7882-5913</orcidid><orcidid>https://orcid.org/0000-0003-2285-3074</orcidid></search><sort><creationdate>202104</creationdate><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><author>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Boltzmann transport equation</topic><topic>Chebyshev approximation</topic><topic>Constraints</topic><topic>Fluid dynamics</topic><topic>Functionals</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Rarefied gas dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Florio, Mario</creatorcontrib><creatorcontrib>Schiassi, Enrico</creatorcontrib><creatorcontrib>Ganapol, Barry D.</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Florio, Mario</au><au>Schiassi, Enrico</au><au>Ganapol, Barry D.</au><au>Furfaro, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046181</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid><orcidid>https://orcid.org/0000-0002-9938-1426</orcidid><orcidid>https://orcid.org/0000-0002-7882-5913</orcidid><orcidid>https://orcid.org/0000-0003-2285-3074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-04, Vol.33 (4)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2515884066
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Approximation
Artificial neural networks
Boltzmann transport equation
Chebyshev approximation
Constraints
Fluid dynamics
Functionals
Machine learning
Neural networks
Physics
Rarefied gas dynamics
title Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-informed%20neural%20networks%20for%20rarefied-gas%20dynamics:%20Thermal%20creep%20flow%20in%20the%20Bhatnagar%E2%80%93Gross%E2%80%93Krook%20approximation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=De%20Florio,%20Mario&rft.date=2021-04&rft.volume=33&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0046181&rft_dat=%3Cproquest_cross%3E2515884066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515884066&rft_id=info:pmid/&rfr_iscdi=true