Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation
This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-04, Vol.33 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | De Florio, Mario Schiassi, Enrico Ganapol, Barry D. Furfaro, Roberto |
description | This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks. |
doi_str_mv | 10.1063/5.0046181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515884066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515884066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRSMEEqWw4AaWWIGUYsfJxGEHFRREJViUtWVsp0nbxMFOKV0gcQduyElwKIIFEqs_Gr3582eC4JDgAcFAT5MBxjEQRraCHsEsC1MA2O7qFIcAlOwGe87NMMY0i6AXvN4Xa1dKF5Z1bmylFar10oqFl3Zl7Nwh30ZWWJ2XWoVT4ZBa16LyI2doUmhbeVZarRuUL8wKlTVqC40uCtHWYirsx9v7yBrnvN5aY-ZINI01L2Ul2tLU-8FOLhZOH3xrP3i4upwMr8Px3ehmeD4OJY3SNkykjLMoIXEGlKY6yRgDSCnTUsQMR1lKIoojokBAijEBoYhgigIVyaOKYqD94Gjj63c_LbVr-cwsbe1Xcm-bMBZj6KjjDSW7xP5i3lgf1K45wbz7Lk_493c9e7JhnSzbr1t-4Gdjf0HeqPw_-K_zJ_kFio4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515884066</pqid></control><display><type>article</type><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</creator><creatorcontrib>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</creatorcontrib><description>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0046181</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Boltzmann transport equation ; Chebyshev approximation ; Constraints ; Fluid dynamics ; Functionals ; Machine learning ; Neural networks ; Physics ; Rarefied gas dynamics</subject><ispartof>Physics of fluids (1994), 2021-04, Vol.33 (4)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</citedby><cites>FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</cites><orcidid>0000-0001-6076-8992 ; 0000-0002-9938-1426 ; 0000-0002-7882-5913 ; 0000-0003-2285-3074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>De Florio, Mario</creatorcontrib><creatorcontrib>Schiassi, Enrico</creatorcontrib><creatorcontrib>Ganapol, Barry D.</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><title>Physics of fluids (1994)</title><description>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Boltzmann transport equation</subject><subject>Chebyshev approximation</subject><subject>Constraints</subject><subject>Fluid dynamics</subject><subject>Functionals</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Rarefied gas dynamics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRSMEEqWw4AaWWIGUYsfJxGEHFRREJViUtWVsp0nbxMFOKV0gcQduyElwKIIFEqs_Gr3582eC4JDgAcFAT5MBxjEQRraCHsEsC1MA2O7qFIcAlOwGe87NMMY0i6AXvN4Xa1dKF5Z1bmylFar10oqFl3Zl7Nwh30ZWWJ2XWoVT4ZBa16LyI2doUmhbeVZarRuUL8wKlTVqC40uCtHWYirsx9v7yBrnvN5aY-ZINI01L2Ul2tLU-8FOLhZOH3xrP3i4upwMr8Px3ehmeD4OJY3SNkykjLMoIXEGlKY6yRgDSCnTUsQMR1lKIoojokBAijEBoYhgigIVyaOKYqD94Gjj63c_LbVr-cwsbe1Xcm-bMBZj6KjjDSW7xP5i3lgf1K45wbz7Lk_493c9e7JhnSzbr1t-4Gdjf0HeqPw_-K_zJ_kFio4</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>De Florio, Mario</creator><creator>Schiassi, Enrico</creator><creator>Ganapol, Barry D.</creator><creator>Furfaro, Roberto</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid><orcidid>https://orcid.org/0000-0002-9938-1426</orcidid><orcidid>https://orcid.org/0000-0002-7882-5913</orcidid><orcidid>https://orcid.org/0000-0003-2285-3074</orcidid></search><sort><creationdate>202104</creationdate><title>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</title><author>De Florio, Mario ; Schiassi, Enrico ; Ganapol, Barry D. ; Furfaro, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5cc49251496337e598866738eca480297123021d6a670016ad1a8d363a5bd2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Boltzmann transport equation</topic><topic>Chebyshev approximation</topic><topic>Constraints</topic><topic>Fluid dynamics</topic><topic>Functionals</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Rarefied gas dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Florio, Mario</creatorcontrib><creatorcontrib>Schiassi, Enrico</creatorcontrib><creatorcontrib>Ganapol, Barry D.</creatorcontrib><creatorcontrib>Furfaro, Roberto</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Florio, Mario</au><au>Schiassi, Enrico</au><au>Ganapol, Barry D.</au><au>Furfaro, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This work aims at accurately solve a thermal creep flow in a plane channel problem, as a class of rarefied-gas dynamics problems, using Physics-Informed Neural Networks (PINNs). We develop a particular PINN framework where the solution of the problem is represented by the Constrained Expressions (CE) prescribed by the recently introduced Theory of Functional Connections (TFC). CEs are represented by a sum of a free-function and a functional (e.g., function of functions) that analytically satisfies the problem constraints regardless to the choice of the free-function. The latter is represented by a shallow Neural Network (NN). Here, the resulting PINN-TFC approach is employed to solve the Boltzmann equation in the Bhatnagar–Gross–Krook approximation modeling the Thermal Creep Flow in a plane channel. We test three different types of shallow NNs, i.e., standard shallow NN, Chebyshev NN (ChNN), and Legendre NN (LeNN). For all the three cases the unknown solutions are computed via the extreme learning machine algorithm. We show that with all these networks we can achieve accurate solutions with a fast training time. In particular, with ChNN and LeNN we are able to match all the available benchmarks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046181</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6076-8992</orcidid><orcidid>https://orcid.org/0000-0002-9938-1426</orcidid><orcidid>https://orcid.org/0000-0002-7882-5913</orcidid><orcidid>https://orcid.org/0000-0003-2285-3074</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-04, Vol.33 (4) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2515884066 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Approximation Artificial neural networks Boltzmann transport equation Chebyshev approximation Constraints Fluid dynamics Functionals Machine learning Neural networks Physics Rarefied gas dynamics |
title | Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar–Gross–Krook approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-informed%20neural%20networks%20for%20rarefied-gas%20dynamics:%20Thermal%20creep%20flow%20in%20the%20Bhatnagar%E2%80%93Gross%E2%80%93Krook%20approximation&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=De%20Florio,%20Mario&rft.date=2021-04&rft.volume=33&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0046181&rft_dat=%3Cproquest_cross%3E2515884066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515884066&rft_id=info:pmid/&rfr_iscdi=true |