Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz
A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this techniq...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-05, Vol.39 (9), p.2725-2736 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2736 |
---|---|
container_issue | 9 |
container_start_page | 2725 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Gonzalez-Guerrero, Luis Shams, Haymen Fatadin, Irshaad Wu, John Edward Fice, Martyn J. Naftaly, Mira Seeds, Alwyn J. Renaud, Cyril C. |
description | A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this technique exhibited penalties of 0.15 and 0.46 dB when used with aggregated Lorentzian linewidths of 28 and 359 kHz, respectively, and 20 GBd 16-quadrature amplitude modulation (QAM) signals. The wireless bridge is also demonstrated in a wavelength division multiplexing (WDM) scenario, where five optical channels are generated and sent to the Tx remote antenna unit (RAU). In this configuration, the full band from 224 to 294 GHz is used. Finally, a 50 Gbit/s transmission is achieved with the proposed wireless bridge in single channel configuration. The wireless transmission distance is limited to 10 cm due to the low power emitted by the uni-travelling carrier photodiode used in the experiments. However, link budget calculations based on state-of-the-art THz technology show that distances >1000 m can be achieved with this approach. |
doi_str_mv | 10.1109/JLT.2021.3053616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515854261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9333585</ieee_id><sourcerecordid>2515854261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f4862e698095cd5d208a49b7ae62cffa9ad75115f79a5eddb26526ebdbd682db3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3AdWo-JplkORbbKpVWqLgMmcmbmlJnajJd6K93Sourtzn33sdB6JbREWPUPLzMVyNOORsJKoVi6gwNmJSacM7EORrQXAiic55doquUNpSyLNP5AM2WYdt2ZNU2gIuUQurAY6bIW_GKl59t1zahwh8hwhZSwo8x-DXgxQ6i60KzxkWHuaR4Ovu9Rhe12ya4Od0hep88rcYzMl9Mn8fFnFRCiI7UmVYclNHUyMpLz6l2mSlzB4pXde2M87lkTNa5cRK8L7mSXEHpS68096UYovtj7y6233tInd20-9j0k5ZLJrXMuGI9RY9UFduUItR2F8OXiz-WUXvwZXtf9uDLnnz1kbtjJADAP276r_tS8Qdyg2Q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854261</pqid></control><display><type>article</type><title>Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz</title><source>IEEE Electronic Library (IEL)</source><creator>Gonzalez-Guerrero, Luis ; Shams, Haymen ; Fatadin, Irshaad ; Wu, John Edward ; Fice, Martyn J. ; Naftaly, Mira ; Seeds, Alwyn J. ; Renaud, Cyril C.</creator><creatorcontrib>Gonzalez-Guerrero, Luis ; Shams, Haymen ; Fatadin, Irshaad ; Wu, John Edward ; Fice, Martyn J. ; Naftaly, Mira ; Seeds, Alwyn J. ; Renaud, Cyril C.</creatorcontrib><description>A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this technique exhibited penalties of 0.15 and 0.46 dB when used with aggregated Lorentzian linewidths of 28 and 359 kHz, respectively, and 20 GBd 16-quadrature amplitude modulation (QAM) signals. The wireless bridge is also demonstrated in a wavelength division multiplexing (WDM) scenario, where five optical channels are generated and sent to the Tx remote antenna unit (RAU). In this configuration, the full band from 224 to 294 GHz is used. Finally, a 50 Gbit/s transmission is achieved with the proposed wireless bridge in single channel configuration. The wireless transmission distance is limited to 10 cm due to the low power emitted by the uni-travelling carrier photodiode used in the experiments. However, link budget calculations based on state-of-the-art THz technology show that distances <inline-formula><tex-math notation="LaTeX">></tex-math></inline-formula>1000 m can be achieved with this approach.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3053616</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bridges ; Broadband communications ; Carrier frequencies ; Configurations ; digital signal processing ; microwave photonics ; millimeter wave communications ; Modulation ; Optical attenuators ; optical mixing ; Optical modulation ; Optical network units ; Optical receivers ; Photodiodes ; Photonics ; Quadrature amplitude modulation ; sub-THz communications ; Wave division multiplexing ; Wavelength division multiplexing ; wireless bridge ; Wireless communication</subject><ispartof>Journal of lightwave technology, 2021-05, Vol.39 (9), p.2725-2736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f4862e698095cd5d208a49b7ae62cffa9ad75115f79a5eddb26526ebdbd682db3</citedby><cites>FETCH-LOGICAL-c333t-f4862e698095cd5d208a49b7ae62cffa9ad75115f79a5eddb26526ebdbd682db3</cites><orcidid>0000-0002-5228-627X ; 0000-0002-5333-6478 ; 0000-0002-4457-5741 ; 0000-0002-0671-822X ; 0000-0003-4101-4487 ; 0000-0002-8814-2315 ; 0000-0003-2809-788X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9333585$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Gonzalez-Guerrero, Luis</creatorcontrib><creatorcontrib>Shams, Haymen</creatorcontrib><creatorcontrib>Fatadin, Irshaad</creatorcontrib><creatorcontrib>Wu, John Edward</creatorcontrib><creatorcontrib>Fice, Martyn J.</creatorcontrib><creatorcontrib>Naftaly, Mira</creatorcontrib><creatorcontrib>Seeds, Alwyn J.</creatorcontrib><creatorcontrib>Renaud, Cyril C.</creatorcontrib><title>Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this technique exhibited penalties of 0.15 and 0.46 dB when used with aggregated Lorentzian linewidths of 28 and 359 kHz, respectively, and 20 GBd 16-quadrature amplitude modulation (QAM) signals. The wireless bridge is also demonstrated in a wavelength division multiplexing (WDM) scenario, where five optical channels are generated and sent to the Tx remote antenna unit (RAU). In this configuration, the full band from 224 to 294 GHz is used. Finally, a 50 Gbit/s transmission is achieved with the proposed wireless bridge in single channel configuration. The wireless transmission distance is limited to 10 cm due to the low power emitted by the uni-travelling carrier photodiode used in the experiments. However, link budget calculations based on state-of-the-art THz technology show that distances <inline-formula><tex-math notation="LaTeX">></tex-math></inline-formula>1000 m can be achieved with this approach.</description><subject>Algorithms</subject><subject>Bridges</subject><subject>Broadband communications</subject><subject>Carrier frequencies</subject><subject>Configurations</subject><subject>digital signal processing</subject><subject>microwave photonics</subject><subject>millimeter wave communications</subject><subject>Modulation</subject><subject>Optical attenuators</subject><subject>optical mixing</subject><subject>Optical modulation</subject><subject>Optical network units</subject><subject>Optical receivers</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Quadrature amplitude modulation</subject><subject>sub-THz communications</subject><subject>Wave division multiplexing</subject><subject>Wavelength division multiplexing</subject><subject>wireless bridge</subject><subject>Wireless communication</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3AdWo-JplkORbbKpVWqLgMmcmbmlJnajJd6K93Sourtzn33sdB6JbREWPUPLzMVyNOORsJKoVi6gwNmJSacM7EORrQXAiic55doquUNpSyLNP5AM2WYdt2ZNU2gIuUQurAY6bIW_GKl59t1zahwh8hwhZSwo8x-DXgxQ6i60KzxkWHuaR4Ovu9Rhe12ya4Od0hep88rcYzMl9Mn8fFnFRCiI7UmVYclNHUyMpLz6l2mSlzB4pXde2M87lkTNa5cRK8L7mSXEHpS68096UYovtj7y6233tInd20-9j0k5ZLJrXMuGI9RY9UFduUItR2F8OXiz-WUXvwZXtf9uDLnnz1kbtjJADAP276r_tS8Qdyg2Q2</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Gonzalez-Guerrero, Luis</creator><creator>Shams, Haymen</creator><creator>Fatadin, Irshaad</creator><creator>Wu, John Edward</creator><creator>Fice, Martyn J.</creator><creator>Naftaly, Mira</creator><creator>Seeds, Alwyn J.</creator><creator>Renaud, Cyril C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5228-627X</orcidid><orcidid>https://orcid.org/0000-0002-5333-6478</orcidid><orcidid>https://orcid.org/0000-0002-4457-5741</orcidid><orcidid>https://orcid.org/0000-0002-0671-822X</orcidid><orcidid>https://orcid.org/0000-0003-4101-4487</orcidid><orcidid>https://orcid.org/0000-0002-8814-2315</orcidid><orcidid>https://orcid.org/0000-0003-2809-788X</orcidid></search><sort><creationdate>20210501</creationdate><title>Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz</title><author>Gonzalez-Guerrero, Luis ; Shams, Haymen ; Fatadin, Irshaad ; Wu, John Edward ; Fice, Martyn J. ; Naftaly, Mira ; Seeds, Alwyn J. ; Renaud, Cyril C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f4862e698095cd5d208a49b7ae62cffa9ad75115f79a5eddb26526ebdbd682db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bridges</topic><topic>Broadband communications</topic><topic>Carrier frequencies</topic><topic>Configurations</topic><topic>digital signal processing</topic><topic>microwave photonics</topic><topic>millimeter wave communications</topic><topic>Modulation</topic><topic>Optical attenuators</topic><topic>optical mixing</topic><topic>Optical modulation</topic><topic>Optical network units</topic><topic>Optical receivers</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Quadrature amplitude modulation</topic><topic>sub-THz communications</topic><topic>Wave division multiplexing</topic><topic>Wavelength division multiplexing</topic><topic>wireless bridge</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Guerrero, Luis</creatorcontrib><creatorcontrib>Shams, Haymen</creatorcontrib><creatorcontrib>Fatadin, Irshaad</creatorcontrib><creatorcontrib>Wu, John Edward</creatorcontrib><creatorcontrib>Fice, Martyn J.</creatorcontrib><creatorcontrib>Naftaly, Mira</creatorcontrib><creatorcontrib>Seeds, Alwyn J.</creatorcontrib><creatorcontrib>Renaud, Cyril C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Guerrero, Luis</au><au>Shams, Haymen</au><au>Fatadin, Irshaad</au><au>Wu, John Edward</au><au>Fice, Martyn J.</au><au>Naftaly, Mira</au><au>Seeds, Alwyn J.</au><au>Renaud, Cyril C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>39</volume><issue>9</issue><spage>2725</spage><epage>2736</epage><pages>2725-2736</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this technique exhibited penalties of 0.15 and 0.46 dB when used with aggregated Lorentzian linewidths of 28 and 359 kHz, respectively, and 20 GBd 16-quadrature amplitude modulation (QAM) signals. The wireless bridge is also demonstrated in a wavelength division multiplexing (WDM) scenario, where five optical channels are generated and sent to the Tx remote antenna unit (RAU). In this configuration, the full band from 224 to 294 GHz is used. Finally, a 50 Gbit/s transmission is achieved with the proposed wireless bridge in single channel configuration. The wireless transmission distance is limited to 10 cm due to the low power emitted by the uni-travelling carrier photodiode used in the experiments. However, link budget calculations based on state-of-the-art THz technology show that distances <inline-formula><tex-math notation="LaTeX">></tex-math></inline-formula>1000 m can be achieved with this approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3053616</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5228-627X</orcidid><orcidid>https://orcid.org/0000-0002-5333-6478</orcidid><orcidid>https://orcid.org/0000-0002-4457-5741</orcidid><orcidid>https://orcid.org/0000-0002-0671-822X</orcidid><orcidid>https://orcid.org/0000-0003-4101-4487</orcidid><orcidid>https://orcid.org/0000-0002-8814-2315</orcidid><orcidid>https://orcid.org/0000-0003-2809-788X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-05, Vol.39 (9), p.2725-2736 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2515854261 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bridges Broadband communications Carrier frequencies Configurations digital signal processing microwave photonics millimeter wave communications Modulation Optical attenuators optical mixing Optical modulation Optical network units Optical receivers Photodiodes Photonics Quadrature amplitude modulation sub-THz communications Wave division multiplexing Wavelength division multiplexing wireless bridge Wireless communication |
title | Pilot-Tone Assisted 16-QAM Photonic Wireless Bridge Operating At 250 GHz |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pilot-Tone%20Assisted%2016-QAM%20Photonic%20Wireless%20Bridge%20Operating%20At%20250%20GHz&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Gonzalez-Guerrero,%20Luis&rft.date=2021-05-01&rft.volume=39&rft.issue=9&rft.spage=2725&rft.epage=2736&rft.pages=2725-2736&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3053616&rft_dat=%3Cproquest_cross%3E2515854261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515854261&rft_id=info:pmid/&rft_ieee_id=9333585&rfr_iscdi=true |