Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination
The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e2005234 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Saadun, Ali J. Kaiser, Selina K. Ruiz‐Ferrando, Andrea Pablo‐García, Sergio Büchele, Simon Fako, Edvin López, Núria Pérez‐Ramírez, Javier |
description | The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms.
Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination. |
doi_str_mv | 10.1002/smll.202005234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2515828070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515828070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</originalsourceid><addsrcrecordid>eNqNkM2O0zAUhS0EYoaBLUsUiSVquf5J7CxRZpgilR9pYB058bVIldjFdoSy4xF4Rp5kXFrKEuSFj66_c-_1IeQ5hTUFYK_jNI5rBgygZFw8IJe0onxVKVY_PGsKF-RJjDsATpmQj8kF56ISkpaXZPdh7kfUYUhLoZ0pNj6m4sZa7FMsvC0aHTrvfv34eTfv9z4kNMWnUafBzVN-S3pcYgatD8X10AU_-QnTV-2w2CwmeIOH2uCywbun5JHVY8Rnp_uKfHl787nZrLYfb981b7arXshKrIxR-dQlaIGKK6oEl9JILuoeq94abaioJSjGq662ZZZ1KXPJgsJaV5xfkZfHvvvgv80YU7vzc3B5ZMtKWiqmQEKm1keqDz7GgLbdh2HSYWkptIdo20O07TnabHhxajt3E5oz_ifLDLw6At-x8zb2A7oezxgAVKBKASoroJlW_083Q_odYeNnl7K1PlmHEZd_7N3evd9u__7iHtr_p9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515828070</pqid></control><display><type>article</type><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</creator><creatorcontrib>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</creatorcontrib><description>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms.
Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202005234</identifier><identifier>PMID: 33464715</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Activated carbon ; Bromination ; Bromine ; carbon carriers ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Density functional theory ; hydrodebromination ; Materials Science ; Materials Science, Multidisciplinary ; mechanism ; Methyl bromide ; Nanoparticles ; Nanoscience & Nanotechnology ; Nanostructure ; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Platinum ; Science & Technology ; Science & Technology - Other Topics ; Selectivity ; Single atom catalysts ; single atoms ; speciation ; Stability analysis ; Technology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608540800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</citedby><cites>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</cites><orcidid>0000-0002-4036-762X ; 0000-0002-5933-5839 ; 0000-0002-8718-4417 ; 0000-0002-5805-7355 ; 0000-0002-0043-5907 ; 0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202005234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202005234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saadun, Ali J.</creatorcontrib><creatorcontrib>Kaiser, Selina K.</creatorcontrib><creatorcontrib>Ruiz‐Ferrando, Andrea</creatorcontrib><creatorcontrib>Pablo‐García, Sergio</creatorcontrib><creatorcontrib>Büchele, Simon</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms.
Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</description><subject>Activated carbon</subject><subject>Bromination</subject><subject>Bromine</subject><subject>carbon carriers</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Density functional theory</subject><subject>hydrodebromination</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mechanism</subject><subject>Methyl bromide</subject><subject>Nanoparticles</subject><subject>Nanoscience & Nanotechnology</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Platinum</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Selectivity</subject><subject>Single atom catalysts</subject><subject>single atoms</subject><subject>speciation</subject><subject>Stability analysis</subject><subject>Technology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM2O0zAUhS0EYoaBLUsUiSVquf5J7CxRZpgilR9pYB058bVIldjFdoSy4xF4Rp5kXFrKEuSFj66_c-_1IeQ5hTUFYK_jNI5rBgygZFw8IJe0onxVKVY_PGsKF-RJjDsATpmQj8kF56ISkpaXZPdh7kfUYUhLoZ0pNj6m4sZa7FMsvC0aHTrvfv34eTfv9z4kNMWnUafBzVN-S3pcYgatD8X10AU_-QnTV-2w2CwmeIOH2uCywbun5JHVY8Rnp_uKfHl787nZrLYfb981b7arXshKrIxR-dQlaIGKK6oEl9JILuoeq94abaioJSjGq662ZZZ1KXPJgsJaV5xfkZfHvvvgv80YU7vzc3B5ZMtKWiqmQEKm1keqDz7GgLbdh2HSYWkptIdo20O07TnabHhxajt3E5oz_ifLDLw6At-x8zb2A7oezxgAVKBKASoroJlW_083Q_odYeNnl7K1PlmHEZd_7N3evd9u__7iHtr_p9A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Saadun, Ali J.</creator><creator>Kaiser, Selina K.</creator><creator>Ruiz‐Ferrando, Andrea</creator><creator>Pablo‐García, Sergio</creator><creator>Büchele, Simon</creator><creator>Fako, Edvin</creator><creator>López, Núria</creator><creator>Pérez‐Ramírez, Javier</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4036-762X</orcidid><orcidid>https://orcid.org/0000-0002-5933-5839</orcidid><orcidid>https://orcid.org/0000-0002-8718-4417</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0002-0043-5907</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20210401</creationdate><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><author>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Bromination</topic><topic>Bromine</topic><topic>carbon carriers</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Density functional theory</topic><topic>hydrodebromination</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mechanism</topic><topic>Methyl bromide</topic><topic>Nanoparticles</topic><topic>Nanoscience & Nanotechnology</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Platinum</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Selectivity</topic><topic>Single atom catalysts</topic><topic>single atoms</topic><topic>speciation</topic><topic>Stability analysis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadun, Ali J.</creatorcontrib><creatorcontrib>Kaiser, Selina K.</creatorcontrib><creatorcontrib>Ruiz‐Ferrando, Andrea</creatorcontrib><creatorcontrib>Pablo‐García, Sergio</creatorcontrib><creatorcontrib>Büchele, Simon</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadun, Ali J.</au><au>Kaiser, Selina K.</au><au>Ruiz‐Ferrando, Andrea</au><au>Pablo‐García, Sergio</au><au>Büchele, Simon</au><au>Fako, Edvin</au><au>López, Núria</au><au>Pérez‐Ramírez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>16</issue><spage>e2005234</spage><epage>n/a</epage><pages>e2005234-n/a</pages><artnum>2005234</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms.
Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33464715</pmid><doi>10.1002/smll.202005234</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4036-762X</orcidid><orcidid>https://orcid.org/0000-0002-5933-5839</orcidid><orcidid>https://orcid.org/0000-0002-8718-4417</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0002-0043-5907</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2515828070 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Activated carbon Bromination Bromine carbon carriers Chemistry Chemistry, Multidisciplinary Chemistry, Physical Density functional theory hydrodebromination Materials Science Materials Science, Multidisciplinary mechanism Methyl bromide Nanoparticles Nanoscience & Nanotechnology Nanostructure Nanotechnology Physical Sciences Physics Physics, Applied Physics, Condensed Matter Platinum Science & Technology Science & Technology - Other Topics Selectivity Single atom catalysts single atoms speciation Stability analysis Technology |
title | Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclearity%20and%20Host%20Effects%20of%20Carbon%E2%80%90Supported%20Platinum%20Catalysts%20for%20Dibromomethane%20Hydrodebromination&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Saadun,%20Ali%20J.&rft.date=2021-04-01&rft.volume=17&rft.issue=16&rft.spage=e2005234&rft.epage=n/a&rft.pages=e2005234-n/a&rft.artnum=2005234&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202005234&rft_dat=%3Cproquest_wiley%3E2515828070%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515828070&rft_id=info:pmid/33464715&rfr_iscdi=true |