Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination

The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234
Hauptverfasser: Saadun, Ali J., Kaiser, Selina K., Ruiz‐Ferrando, Andrea, Pablo‐García, Sergio, Büchele, Simon, Fako, Edvin, López, Núria, Pérez‐Ramírez, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2005234
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Saadun, Ali J.
Kaiser, Selina K.
Ruiz‐Ferrando, Andrea
Pablo‐García, Sergio
Büchele, Simon
Fako, Edvin
López, Núria
Pérez‐Ramírez, Javier
description The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms. Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.
doi_str_mv 10.1002/smll.202005234
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2515828070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515828070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</originalsourceid><addsrcrecordid>eNqNkM2O0zAUhS0EYoaBLUsUiSVquf5J7CxRZpgilR9pYB058bVIldjFdoSy4xF4Rp5kXFrKEuSFj66_c-_1IeQ5hTUFYK_jNI5rBgygZFw8IJe0onxVKVY_PGsKF-RJjDsATpmQj8kF56ISkpaXZPdh7kfUYUhLoZ0pNj6m4sZa7FMsvC0aHTrvfv34eTfv9z4kNMWnUafBzVN-S3pcYgatD8X10AU_-QnTV-2w2CwmeIOH2uCywbun5JHVY8Rnp_uKfHl787nZrLYfb981b7arXshKrIxR-dQlaIGKK6oEl9JILuoeq94abaioJSjGq662ZZZ1KXPJgsJaV5xfkZfHvvvgv80YU7vzc3B5ZMtKWiqmQEKm1keqDz7GgLbdh2HSYWkptIdo20O07TnabHhxajt3E5oz_ifLDLw6At-x8zb2A7oezxgAVKBKASoroJlW_083Q_odYeNnl7K1PlmHEZd_7N3evd9u__7iHtr_p9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515828070</pqid></control><display><type>article</type><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</creator><creatorcontrib>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</creatorcontrib><description>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms. Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202005234</identifier><identifier>PMID: 33464715</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Activated carbon ; Bromination ; Bromine ; carbon carriers ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Density functional theory ; hydrodebromination ; Materials Science ; Materials Science, Multidisciplinary ; mechanism ; Methyl bromide ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Nanostructure ; Nanotechnology ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Platinum ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Selectivity ; Single atom catalysts ; single atoms ; speciation ; Stability analysis ; Technology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608540800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</citedby><cites>FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</cites><orcidid>0000-0002-4036-762X ; 0000-0002-5933-5839 ; 0000-0002-8718-4417 ; 0000-0002-5805-7355 ; 0000-0002-0043-5907 ; 0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202005234$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202005234$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saadun, Ali J.</creatorcontrib><creatorcontrib>Kaiser, Selina K.</creatorcontrib><creatorcontrib>Ruiz‐Ferrando, Andrea</creatorcontrib><creatorcontrib>Pablo‐García, Sergio</creatorcontrib><creatorcontrib>Büchele, Simon</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>SMALL</addtitle><addtitle>Small</addtitle><description>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms. Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</description><subject>Activated carbon</subject><subject>Bromination</subject><subject>Bromine</subject><subject>carbon carriers</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Density functional theory</subject><subject>hydrodebromination</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>mechanism</subject><subject>Methyl bromide</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Platinum</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Selectivity</subject><subject>Single atom catalysts</subject><subject>single atoms</subject><subject>speciation</subject><subject>Stability analysis</subject><subject>Technology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM2O0zAUhS0EYoaBLUsUiSVquf5J7CxRZpgilR9pYB058bVIldjFdoSy4xF4Rp5kXFrKEuSFj66_c-_1IeQ5hTUFYK_jNI5rBgygZFw8IJe0onxVKVY_PGsKF-RJjDsATpmQj8kF56ISkpaXZPdh7kfUYUhLoZ0pNj6m4sZa7FMsvC0aHTrvfv34eTfv9z4kNMWnUafBzVN-S3pcYgatD8X10AU_-QnTV-2w2CwmeIOH2uCywbun5JHVY8Rnp_uKfHl787nZrLYfb981b7arXshKrIxR-dQlaIGKK6oEl9JILuoeq94abaioJSjGq662ZZZ1KXPJgsJaV5xfkZfHvvvgv80YU7vzc3B5ZMtKWiqmQEKm1keqDz7GgLbdh2HSYWkptIdo20O07TnabHhxajt3E5oz_ifLDLw6At-x8zb2A7oezxgAVKBKASoroJlW_083Q_odYeNnl7K1PlmHEZd_7N3evd9u__7iHtr_p9A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Saadun, Ali J.</creator><creator>Kaiser, Selina K.</creator><creator>Ruiz‐Ferrando, Andrea</creator><creator>Pablo‐García, Sergio</creator><creator>Büchele, Simon</creator><creator>Fako, Edvin</creator><creator>López, Núria</creator><creator>Pérez‐Ramírez, Javier</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4036-762X</orcidid><orcidid>https://orcid.org/0000-0002-5933-5839</orcidid><orcidid>https://orcid.org/0000-0002-8718-4417</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0002-0043-5907</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20210401</creationdate><title>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</title><author>Saadun, Ali J. ; Kaiser, Selina K. ; Ruiz‐Ferrando, Andrea ; Pablo‐García, Sergio ; Büchele, Simon ; Fako, Edvin ; López, Núria ; Pérez‐Ramírez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-dd8d8d950a4e838184377d7349ce6cfdad149708236b9f5970957149f08e9a633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Bromination</topic><topic>Bromine</topic><topic>carbon carriers</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Density functional theory</topic><topic>hydrodebromination</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>mechanism</topic><topic>Methyl bromide</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Platinum</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Selectivity</topic><topic>Single atom catalysts</topic><topic>single atoms</topic><topic>speciation</topic><topic>Stability analysis</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadun, Ali J.</creatorcontrib><creatorcontrib>Kaiser, Selina K.</creatorcontrib><creatorcontrib>Ruiz‐Ferrando, Andrea</creatorcontrib><creatorcontrib>Pablo‐García, Sergio</creatorcontrib><creatorcontrib>Büchele, Simon</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadun, Ali J.</au><au>Kaiser, Selina K.</au><au>Ruiz‐Ferrando, Andrea</au><au>Pablo‐García, Sergio</au><au>Büchele, Simon</au><au>Fako, Edvin</au><au>López, Núria</au><au>Pérez‐Ramírez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><stitle>SMALL</stitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>16</issue><spage>e2005234</spage><epage>n/a</epage><pages>e2005234-n/a</pages><artnum>2005234</artnum><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The identification of the active sites and the derivation of structure‐performance relationships are central for the development of high‐performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated‐ and N‐doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine‐mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in‐depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3–2.3 nm‐sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC‐supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H‐atoms. Controlling the speciation of platinum on carbon carriers enable the assessment of nuclearity and host effects in CH2Br2 hydrodebromination. In contrast to nanoparticles, single atoms provide exceptional CH3Br selectivity at the expense of lower activity and stability. Furthermore, while N‐functionalities enhance reactivity, they promote coking mechanisms. Contrarily, activity losses of activated carbon‐supported catalysts are linked to platinum sintering and bromination.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><pmid>33464715</pmid><doi>10.1002/smll.202005234</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4036-762X</orcidid><orcidid>https://orcid.org/0000-0002-5933-5839</orcidid><orcidid>https://orcid.org/0000-0002-8718-4417</orcidid><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><orcidid>https://orcid.org/0000-0002-0043-5907</orcidid><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (16), p.e2005234-n/a, Article 2005234
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2515828070
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Activated carbon
Bromination
Bromine
carbon carriers
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Density functional theory
hydrodebromination
Materials Science
Materials Science, Multidisciplinary
mechanism
Methyl bromide
Nanoparticles
Nanoscience & Nanotechnology
Nanostructure
Nanotechnology
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Platinum
Science & Technology
Science & Technology - Other Topics
Selectivity
Single atom catalysts
single atoms
speciation
Stability analysis
Technology
title Nuclearity and Host Effects of Carbon‐Supported Platinum Catalysts for Dibromomethane Hydrodebromination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclearity%20and%20Host%20Effects%20of%20Carbon%E2%80%90Supported%20Platinum%20Catalysts%20for%20Dibromomethane%20Hydrodebromination&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Saadun,%20Ali%20J.&rft.date=2021-04-01&rft.volume=17&rft.issue=16&rft.spage=e2005234&rft.epage=n/a&rft.pages=e2005234-n/a&rft.artnum=2005234&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202005234&rft_dat=%3Cproquest_wiley%3E2515828070%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515828070&rft_id=info:pmid/33464715&rfr_iscdi=true