Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis
Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applic...
Gespeichert in:
Veröffentlicht in: | Archives of computational methods in engineering 2021-05, Vol.28 (3), p.1871-1927 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1927 |
---|---|
container_issue | 3 |
container_start_page | 1871 |
container_title | Archives of computational methods in engineering |
container_volume | 28 |
creator | Kashani, Ali R. Chiong, Raymond Mirjalili, Seyedali Gandomi, Amir H. |
description | Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases. |
doi_str_mv | 10.1007/s11831-020-09442-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515766420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515766420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKd_wKeAz9WbJmlX38bQKQw2nPoa0vRmZrRNTbqN-evtnOCbT_c8nO9w-aLomsItBcjuAqUjRmNIIIac8ySGk2hAR6M0ptmIn_aZMh4zSOE8ughhDSB4nieDaLVQvrO6QrLcKV-TedvZ2n6pzrqGvCtvVdMFYpwnS1dtbbMiU3Qd6o_GalWRhXdFhXW4Jy-4tbgjqinJxNWt8v3EFsm4UdU-2HAZnRlVBbz6vcPo7fHhdfIUz-bT58l4FmtG8y5WJQpTcFOWHE2ZoIAcsdApomKlMJmAjGujaalL0IIznqkkzXMoCsMKIRQbRjfH3da7zw2GTq7dxvdPBJkIKrI05Qn0reTY0t6F4NHI1tta-b2kIA9C5VGo7IXKH6HyALEjFPpys0L_N_0P9Q1RQXuG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515766420</pqid></control><display><type>article</type><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</creator><creatorcontrib>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</creatorcontrib><description>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-020-09442-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Engineering ; Geotechnical engineering ; Mathematical and Computational Engineering ; Optimization techniques ; Original Paper ; Particle swarm optimization ; Retaining walls ; Slope stability</subject><ispartof>Archives of computational methods in engineering, 2021-05, Vol.28 (3), p.1871-1927</ispartof><rights>CIMNE, Barcelona, Spain 2020</rights><rights>CIMNE, Barcelona, Spain 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</citedby><cites>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-020-09442-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-020-09442-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kashani, Ali R.</creatorcontrib><creatorcontrib>Chiong, Raymond</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Gandomi, Amir H.</creatorcontrib><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</description><subject>Algorithms</subject><subject>Engineering</subject><subject>Geotechnical engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Optimization techniques</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Retaining walls</subject><subject>Slope stability</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYsoOKd_wKeAz9WbJmlX38bQKQw2nPoa0vRmZrRNTbqN-evtnOCbT_c8nO9w-aLomsItBcjuAqUjRmNIIIac8ySGk2hAR6M0ptmIn_aZMh4zSOE8ughhDSB4nieDaLVQvrO6QrLcKV-TedvZ2n6pzrqGvCtvVdMFYpwnS1dtbbMiU3Qd6o_GalWRhXdFhXW4Jy-4tbgjqinJxNWt8v3EFsm4UdU-2HAZnRlVBbz6vcPo7fHhdfIUz-bT58l4FmtG8y5WJQpTcFOWHE2ZoIAcsdApomKlMJmAjGujaalL0IIznqkkzXMoCsMKIRQbRjfH3da7zw2GTq7dxvdPBJkIKrI05Qn0reTY0t6F4NHI1tta-b2kIA9C5VGo7IXKH6HyALEjFPpys0L_N_0P9Q1RQXuG</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kashani, Ali R.</creator><creator>Chiong, Raymond</creator><creator>Mirjalili, Seyedali</creator><creator>Gandomi, Amir H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210501</creationdate><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><author>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Engineering</topic><topic>Geotechnical engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Optimization techniques</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Retaining walls</topic><topic>Slope stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashani, Ali R.</creatorcontrib><creatorcontrib>Chiong, Raymond</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Gandomi, Amir H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashani, Ali R.</au><au>Chiong, Raymond</au><au>Mirjalili, Seyedali</au><au>Gandomi, Amir H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><spage>1871</spage><epage>1927</epage><pages>1871-1927</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-020-09442-0</doi><tpages>57</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-3060 |
ispartof | Archives of computational methods in engineering, 2021-05, Vol.28 (3), p.1871-1927 |
issn | 1134-3060 1886-1784 |
language | eng |
recordid | cdi_proquest_journals_2515766420 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Engineering Geotechnical engineering Mathematical and Computational Engineering Optimization techniques Original Paper Particle swarm optimization Retaining walls Slope stability |
title | Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Swarm%20Optimization%20Variants%20for%20Solving%20Geotechnical%20Problems:%20Review%20and%20Comparative%20Analysis&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Kashani,%20Ali%20R.&rft.date=2021-05-01&rft.volume=28&rft.issue=3&rft.spage=1871&rft.epage=1927&rft.pages=1871-1927&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-020-09442-0&rft_dat=%3Cproquest_cross%3E2515766420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515766420&rft_id=info:pmid/&rfr_iscdi=true |