Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis

Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of computational methods in engineering 2021-05, Vol.28 (3), p.1871-1927
Hauptverfasser: Kashani, Ali R., Chiong, Raymond, Mirjalili, Seyedali, Gandomi, Amir H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1927
container_issue 3
container_start_page 1871
container_title Archives of computational methods in engineering
container_volume 28
creator Kashani, Ali R.
Chiong, Raymond
Mirjalili, Seyedali
Gandomi, Amir H.
description Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.
doi_str_mv 10.1007/s11831-020-09442-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515766420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515766420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKd_wKeAz9WbJmlX38bQKQw2nPoa0vRmZrRNTbqN-evtnOCbT_c8nO9w-aLomsItBcjuAqUjRmNIIIac8ySGk2hAR6M0ptmIn_aZMh4zSOE8ughhDSB4nieDaLVQvrO6QrLcKV-TedvZ2n6pzrqGvCtvVdMFYpwnS1dtbbMiU3Qd6o_GalWRhXdFhXW4Jy-4tbgjqinJxNWt8v3EFsm4UdU-2HAZnRlVBbz6vcPo7fHhdfIUz-bT58l4FmtG8y5WJQpTcFOWHE2ZoIAcsdApomKlMJmAjGujaalL0IIznqkkzXMoCsMKIRQbRjfH3da7zw2GTq7dxvdPBJkIKrI05Qn0reTY0t6F4NHI1tta-b2kIA9C5VGo7IXKH6HyALEjFPpys0L_N_0P9Q1RQXuG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515766420</pqid></control><display><type>article</type><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</creator><creatorcontrib>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</creatorcontrib><description>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-020-09442-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Engineering ; Geotechnical engineering ; Mathematical and Computational Engineering ; Optimization techniques ; Original Paper ; Particle swarm optimization ; Retaining walls ; Slope stability</subject><ispartof>Archives of computational methods in engineering, 2021-05, Vol.28 (3), p.1871-1927</ispartof><rights>CIMNE, Barcelona, Spain 2020</rights><rights>CIMNE, Barcelona, Spain 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</citedby><cites>FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-020-09442-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-020-09442-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kashani, Ali R.</creatorcontrib><creatorcontrib>Chiong, Raymond</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Gandomi, Amir H.</creatorcontrib><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</description><subject>Algorithms</subject><subject>Engineering</subject><subject>Geotechnical engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Optimization techniques</subject><subject>Original Paper</subject><subject>Particle swarm optimization</subject><subject>Retaining walls</subject><subject>Slope stability</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYsoOKd_wKeAz9WbJmlX38bQKQw2nPoa0vRmZrRNTbqN-evtnOCbT_c8nO9w-aLomsItBcjuAqUjRmNIIIac8ySGk2hAR6M0ptmIn_aZMh4zSOE8ughhDSB4nieDaLVQvrO6QrLcKV-TedvZ2n6pzrqGvCtvVdMFYpwnS1dtbbMiU3Qd6o_GalWRhXdFhXW4Jy-4tbgjqinJxNWt8v3EFsm4UdU-2HAZnRlVBbz6vcPo7fHhdfIUz-bT58l4FmtG8y5WJQpTcFOWHE2ZoIAcsdApomKlMJmAjGujaalL0IIznqkkzXMoCsMKIRQbRjfH3da7zw2GTq7dxvdPBJkIKrI05Qn0reTY0t6F4NHI1tta-b2kIA9C5VGo7IXKH6HyALEjFPpys0L_N_0P9Q1RQXuG</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Kashani, Ali R.</creator><creator>Chiong, Raymond</creator><creator>Mirjalili, Seyedali</creator><creator>Gandomi, Amir H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210501</creationdate><title>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</title><author>Kashani, Ali R. ; Chiong, Raymond ; Mirjalili, Seyedali ; Gandomi, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ade5fb4fdd4efd2e509eebc6eea3d5f75074cfc1dcd0c54347a26990bbf3b55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Engineering</topic><topic>Geotechnical engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Optimization techniques</topic><topic>Original Paper</topic><topic>Particle swarm optimization</topic><topic>Retaining walls</topic><topic>Slope stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashani, Ali R.</creatorcontrib><creatorcontrib>Chiong, Raymond</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Gandomi, Amir H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashani, Ali R.</au><au>Chiong, Raymond</au><au>Mirjalili, Seyedali</au><au>Gandomi, Amir H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><spage>1871</spage><epage>1927</epage><pages>1871-1927</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Optimization techniques have drawn much attention for solving geotechnical engineering problems in recent years. Particle swarm optimization (PSO) is one of the most widely used population-based optimizers with a wide range of applications. In this paper, we first provide a detailed review of applications of PSO on different geotechnical problems. Then, we present a comprehensive computational study using several variants of PSO to solve three specific geotechnical engineering benchmark problems: the retaining wall, shallow footing, and slope stability. Through the computational study, we aim to better understand the algorithm behavior, in particular on how to balance exploratory and exploitative mechanisms in these PSO variants. Experimental results show that, although there is no universal strategy to enhance the performance of PSO for all the problems tackled, accuracies for most of the PSO variants are significantly higher compared to the original PSO in a majority of cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-020-09442-0</doi><tpages>57</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1134-3060
ispartof Archives of computational methods in engineering, 2021-05, Vol.28 (3), p.1871-1927
issn 1134-3060
1886-1784
language eng
recordid cdi_proquest_journals_2515766420
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Engineering
Geotechnical engineering
Mathematical and Computational Engineering
Optimization techniques
Original Paper
Particle swarm optimization
Retaining walls
Slope stability
title Particle Swarm Optimization Variants for Solving Geotechnical Problems: Review and Comparative Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20Swarm%20Optimization%20Variants%20for%20Solving%20Geotechnical%20Problems:%20Review%20and%20Comparative%20Analysis&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Kashani,%20Ali%20R.&rft.date=2021-05-01&rft.volume=28&rft.issue=3&rft.spage=1871&rft.epage=1927&rft.pages=1871-1927&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-020-09442-0&rft_dat=%3Cproquest_cross%3E2515766420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515766420&rft_id=info:pmid/&rfr_iscdi=true