Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)

Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2021-05, Vol.548, p.152841, Article 152841
Hauptverfasser: Ordás, Nerea, Portolés, Luis, Azpeleta, María, Gómez, Amaia, Blasco, José Ramón, Martinez, Mario, Ureña, Julia, Iturriza, Iñigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152841
container_title Journal of nuclear materials
container_volume 548
creator Ordás, Nerea
Portolés, Luis
Azpeleta, María
Gómez, Amaia
Blasco, José Ramón
Martinez, Mario
Ureña, Julia
Iturriza, Iñigo
description Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries. Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum. In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.
doi_str_mv 10.1016/j.jnucmat.2021.152841
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515756375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311521000647</els_id><sourcerecordid>2515756375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqXwEZAiscCQYDvxn0yIhBaQKtGBicVynavkqImLnRTx7XGV7kx3Or337u6H0C3BGcGEP7ZZ24-m00NGMSUZYVQW5AzNiBR5WkiKz9EMY0rTnBB2ia5CaDHGrMRshqoXOMDO7Tvoh8Rtk3qs_ZdPDlYnix2Ywbs-qUB3ydr9NOBj3yTLMdg4vl9U6bpaPlyji63eBbg51Tn6XC4-67d09fH6Xj-vUpPnYkg525gGSgAQHGPNtSRFPIMLWjRClM2Gy5JxwxjwKCFlKTdMCC1ZIUuR83yO7qbYvXffI4RBtW70fdyoKCNMMJ4LFlVsUhnvQvCwVXtvO-1_FcHqSEu16kRLHWmpiVb0PU0-iB8cLHgVjIXeQGN9xKAaZ_9J-AN6U3Hx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515756375</pqid></control><display><type>article</type><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</creator><creatorcontrib>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</creatorcontrib><description>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries. Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum. In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2021.152841</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive Manufacturing ; Age hardening ; Ageing ; Aging (artificial) ; Alloys ; Copper ; Copper base alloys ; Cr precipitates ; CuCrZr alloy ; Electron Beam Powder Bed Fusion ; Electron beams ; Forging ; Hardness ; Heat conductivity ; Heat exchangers ; Heat sinks ; Heat transfer ; Heat treating ; Heat treatment ; Heat treatments ; High vacuum ; Hot rolling ; Laser beams ; Microstructure ; Oxidation ; Parameter identification ; Powder ; Powder beds ; Precipitates ; Precipitation hardening ; Process parameters ; Thermal conductivity ; Zirconium</subject><ispartof>Journal of nuclear materials, 2021-05, Vol.548, p.152841, Article 152841</ispartof><rights>2021</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</citedby><cites>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</cites><orcidid>0000-0002-1143-1573 ; 0000-0002-3740-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311521000647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ordás, Nerea</creatorcontrib><creatorcontrib>Portolés, Luis</creatorcontrib><creatorcontrib>Azpeleta, María</creatorcontrib><creatorcontrib>Gómez, Amaia</creatorcontrib><creatorcontrib>Blasco, José Ramón</creatorcontrib><creatorcontrib>Martinez, Mario</creatorcontrib><creatorcontrib>Ureña, Julia</creatorcontrib><creatorcontrib>Iturriza, Iñigo</creatorcontrib><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><title>Journal of nuclear materials</title><description>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries. Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum. In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</description><subject>Additive Manufacturing</subject><subject>Age hardening</subject><subject>Ageing</subject><subject>Aging (artificial)</subject><subject>Alloys</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Cr precipitates</subject><subject>CuCrZr alloy</subject><subject>Electron Beam Powder Bed Fusion</subject><subject>Electron beams</subject><subject>Forging</subject><subject>Hardness</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>High vacuum</subject><subject>Hot rolling</subject><subject>Laser beams</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Parameter identification</subject><subject>Powder</subject><subject>Powder beds</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Process parameters</subject><subject>Thermal conductivity</subject><subject>Zirconium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqXwEZAiscCQYDvxn0yIhBaQKtGBicVynavkqImLnRTx7XGV7kx3Or337u6H0C3BGcGEP7ZZ24-m00NGMSUZYVQW5AzNiBR5WkiKz9EMY0rTnBB2ia5CaDHGrMRshqoXOMDO7Tvoh8Rtk3qs_ZdPDlYnix2Ywbs-qUB3ydr9NOBj3yTLMdg4vl9U6bpaPlyji63eBbg51Tn6XC4-67d09fH6Xj-vUpPnYkg525gGSgAQHGPNtSRFPIMLWjRClM2Gy5JxwxjwKCFlKTdMCC1ZIUuR83yO7qbYvXffI4RBtW70fdyoKCNMMJ4LFlVsUhnvQvCwVXtvO-1_FcHqSEu16kRLHWmpiVb0PU0-iB8cLHgVjIXeQGN9xKAaZ_9J-AN6U3Hx</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ordás, Nerea</creator><creator>Portolés, Luis</creator><creator>Azpeleta, María</creator><creator>Gómez, Amaia</creator><creator>Blasco, José Ramón</creator><creator>Martinez, Mario</creator><creator>Ureña, Julia</creator><creator>Iturriza, Iñigo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1143-1573</orcidid><orcidid>https://orcid.org/0000-0002-3740-3079</orcidid></search><sort><creationdate>202105</creationdate><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><author>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive Manufacturing</topic><topic>Age hardening</topic><topic>Ageing</topic><topic>Aging (artificial)</topic><topic>Alloys</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Cr precipitates</topic><topic>CuCrZr alloy</topic><topic>Electron Beam Powder Bed Fusion</topic><topic>Electron beams</topic><topic>Forging</topic><topic>Hardness</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>High vacuum</topic><topic>Hot rolling</topic><topic>Laser beams</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Parameter identification</topic><topic>Powder</topic><topic>Powder beds</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Process parameters</topic><topic>Thermal conductivity</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordás, Nerea</creatorcontrib><creatorcontrib>Portolés, Luis</creatorcontrib><creatorcontrib>Azpeleta, María</creatorcontrib><creatorcontrib>Gómez, Amaia</creatorcontrib><creatorcontrib>Blasco, José Ramón</creatorcontrib><creatorcontrib>Martinez, Mario</creatorcontrib><creatorcontrib>Ureña, Julia</creatorcontrib><creatorcontrib>Iturriza, Iñigo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordás, Nerea</au><au>Portolés, Luis</au><au>Azpeleta, María</au><au>Gómez, Amaia</au><au>Blasco, José Ramón</au><au>Martinez, Mario</au><au>Ureña, Julia</au><au>Iturriza, Iñigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</atitle><jtitle>Journal of nuclear materials</jtitle><date>2021-05</date><risdate>2021</risdate><volume>548</volume><spage>152841</spage><pages>152841-</pages><artnum>152841</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries. Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum. In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2021.152841</doi><orcidid>https://orcid.org/0000-0002-1143-1573</orcidid><orcidid>https://orcid.org/0000-0002-3740-3079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2021-05, Vol.548, p.152841, Article 152841
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2515756375
source Elsevier ScienceDirect Journals Complete
subjects Additive Manufacturing
Age hardening
Ageing
Aging (artificial)
Alloys
Copper
Copper base alloys
Cr precipitates
CuCrZr alloy
Electron Beam Powder Bed Fusion
Electron beams
Forging
Hardness
Heat conductivity
Heat exchangers
Heat sinks
Heat transfer
Heat treating
Heat treatment
Heat treatments
High vacuum
Hot rolling
Laser beams
Microstructure
Oxidation
Parameter identification
Powder
Powder beds
Precipitates
Precipitation hardening
Process parameters
Thermal conductivity
Zirconium
title Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20CuCrZr%20via%20Electron%20Beam%20Powder%20Bed%20Fusion%20(EB-PBF)&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ord%C3%A1s,%20Nerea&rft.date=2021-05&rft.volume=548&rft.spage=152841&rft.pages=152841-&rft.artnum=152841&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2021.152841&rft_dat=%3Cproquest_cross%3E2515756375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515756375&rft_id=info:pmid/&rft_els_id=S0022311521000647&rfr_iscdi=true