Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)
Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challe...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2021-05, Vol.548, p.152841, Article 152841 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152841 |
container_title | Journal of nuclear materials |
container_volume | 548 |
creator | Ordás, Nerea Portolés, Luis Azpeleta, María Gómez, Amaia Blasco, José Ramón Martinez, Mario Ureña, Julia Iturriza, Iñigo |
description | Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries.
Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum.
In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness. |
doi_str_mv | 10.1016/j.jnucmat.2021.152841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515756375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311521000647</els_id><sourcerecordid>2515756375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqXwEZAiscCQYDvxn0yIhBaQKtGBicVynavkqImLnRTx7XGV7kx3Or337u6H0C3BGcGEP7ZZ24-m00NGMSUZYVQW5AzNiBR5WkiKz9EMY0rTnBB2ia5CaDHGrMRshqoXOMDO7Tvoh8Rtk3qs_ZdPDlYnix2Ywbs-qUB3ydr9NOBj3yTLMdg4vl9U6bpaPlyji63eBbg51Tn6XC4-67d09fH6Xj-vUpPnYkg525gGSgAQHGPNtSRFPIMLWjRClM2Gy5JxwxjwKCFlKTdMCC1ZIUuR83yO7qbYvXffI4RBtW70fdyoKCNMMJ4LFlVsUhnvQvCwVXtvO-1_FcHqSEu16kRLHWmpiVb0PU0-iB8cLHgVjIXeQGN9xKAaZ_9J-AN6U3Hx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515756375</pqid></control><display><type>article</type><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</creator><creatorcontrib>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</creatorcontrib><description>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries.
Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum.
In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2021.152841</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Additive Manufacturing ; Age hardening ; Ageing ; Aging (artificial) ; Alloys ; Copper ; Copper base alloys ; Cr precipitates ; CuCrZr alloy ; Electron Beam Powder Bed Fusion ; Electron beams ; Forging ; Hardness ; Heat conductivity ; Heat exchangers ; Heat sinks ; Heat transfer ; Heat treating ; Heat treatment ; Heat treatments ; High vacuum ; Hot rolling ; Laser beams ; Microstructure ; Oxidation ; Parameter identification ; Powder ; Powder beds ; Precipitates ; Precipitation hardening ; Process parameters ; Thermal conductivity ; Zirconium</subject><ispartof>Journal of nuclear materials, 2021-05, Vol.548, p.152841, Article 152841</ispartof><rights>2021</rights><rights>Copyright Elsevier BV May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</citedby><cites>FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</cites><orcidid>0000-0002-1143-1573 ; 0000-0002-3740-3079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311521000647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ordás, Nerea</creatorcontrib><creatorcontrib>Portolés, Luis</creatorcontrib><creatorcontrib>Azpeleta, María</creatorcontrib><creatorcontrib>Gómez, Amaia</creatorcontrib><creatorcontrib>Blasco, José Ramón</creatorcontrib><creatorcontrib>Martinez, Mario</creatorcontrib><creatorcontrib>Ureña, Julia</creatorcontrib><creatorcontrib>Iturriza, Iñigo</creatorcontrib><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><title>Journal of nuclear materials</title><description>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries.
Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum.
In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</description><subject>Additive Manufacturing</subject><subject>Age hardening</subject><subject>Ageing</subject><subject>Aging (artificial)</subject><subject>Alloys</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Cr precipitates</subject><subject>CuCrZr alloy</subject><subject>Electron Beam Powder Bed Fusion</subject><subject>Electron beams</subject><subject>Forging</subject><subject>Hardness</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>High vacuum</subject><subject>Hot rolling</subject><subject>Laser beams</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Parameter identification</subject><subject>Powder</subject><subject>Powder beds</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Process parameters</subject><subject>Thermal conductivity</subject><subject>Zirconium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqXwEZAiscCQYDvxn0yIhBaQKtGBicVynavkqImLnRTx7XGV7kx3Or337u6H0C3BGcGEP7ZZ24-m00NGMSUZYVQW5AzNiBR5WkiKz9EMY0rTnBB2ia5CaDHGrMRshqoXOMDO7Tvoh8Rtk3qs_ZdPDlYnix2Ywbs-qUB3ydr9NOBj3yTLMdg4vl9U6bpaPlyji63eBbg51Tn6XC4-67d09fH6Xj-vUpPnYkg525gGSgAQHGPNtSRFPIMLWjRClM2Gy5JxwxjwKCFlKTdMCC1ZIUuR83yO7qbYvXffI4RBtW70fdyoKCNMMJ4LFlVsUhnvQvCwVXtvO-1_FcHqSEu16kRLHWmpiVb0PU0-iB8cLHgVjIXeQGN9xKAaZ_9J-AN6U3Hx</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ordás, Nerea</creator><creator>Portolés, Luis</creator><creator>Azpeleta, María</creator><creator>Gómez, Amaia</creator><creator>Blasco, José Ramón</creator><creator>Martinez, Mario</creator><creator>Ureña, Julia</creator><creator>Iturriza, Iñigo</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1143-1573</orcidid><orcidid>https://orcid.org/0000-0002-3740-3079</orcidid></search><sort><creationdate>202105</creationdate><title>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</title><author>Ordás, Nerea ; Portolés, Luis ; Azpeleta, María ; Gómez, Amaia ; Blasco, José Ramón ; Martinez, Mario ; Ureña, Julia ; Iturriza, Iñigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-65bcde9eee7600a6a8140006724d779db68956c55e6ee71998b577a854897363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive Manufacturing</topic><topic>Age hardening</topic><topic>Ageing</topic><topic>Aging (artificial)</topic><topic>Alloys</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Cr precipitates</topic><topic>CuCrZr alloy</topic><topic>Electron Beam Powder Bed Fusion</topic><topic>Electron beams</topic><topic>Forging</topic><topic>Hardness</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>High vacuum</topic><topic>Hot rolling</topic><topic>Laser beams</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Parameter identification</topic><topic>Powder</topic><topic>Powder beds</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Process parameters</topic><topic>Thermal conductivity</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordás, Nerea</creatorcontrib><creatorcontrib>Portolés, Luis</creatorcontrib><creatorcontrib>Azpeleta, María</creatorcontrib><creatorcontrib>Gómez, Amaia</creatorcontrib><creatorcontrib>Blasco, José Ramón</creatorcontrib><creatorcontrib>Martinez, Mario</creatorcontrib><creatorcontrib>Ureña, Julia</creatorcontrib><creatorcontrib>Iturriza, Iñigo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordás, Nerea</au><au>Portolés, Luis</au><au>Azpeleta, María</au><au>Gómez, Amaia</au><au>Blasco, José Ramón</au><au>Martinez, Mario</au><au>Ureña, Julia</au><au>Iturriza, Iñigo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF)</atitle><jtitle>Journal of nuclear materials</jtitle><date>2021-05</date><risdate>2021</risdate><volume>548</volume><spage>152841</spage><pages>152841-</pages><artnum>152841</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Precipitation hardened CuCrZr alloy is the baseline option as heat sink material for the water cooled W divertor concept of DEMO owing to its combination of high thermal conductivity and strength. However, traditional processing of CuCrZr by casting and forging or hot rolling involves several challenges: coarsening of Cr precipitates, microstructures highly heterogeneous, or difficulties in obtaining complex geometries.
Additive Manufacturing (AM) enables creating innovative solutions with complex structures for heat exchangers and heat sinks. Compared to Laser Powder Bed Fusion (L-PBF), the EB-PBF (Electron Beam Powder Bed Fusion) AM technology offers advantages when processing copper alloys: it avoids difficulties associated to the high thermal conductivity and reflectivity of copper-based materials and prevents their oxidation by working under high vacuum.
In this work the study of AM of a CuCrZr alloy with nominal composition 0.6–0.9 Cr, 0.07–0.15 Zr (wt.%) has been performed by EB-PBF. A detailed process parameters study has been performed to identify the process window and obtain dense materials free of defects. The process parameters, including post-built heat treatments like age hardening, were correlated with the microstructural evolution, the thermal conductivity and the hardness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2021.152841</doi><orcidid>https://orcid.org/0000-0002-1143-1573</orcidid><orcidid>https://orcid.org/0000-0002-3740-3079</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2021-05, Vol.548, p.152841, Article 152841 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_journals_2515756375 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Additive Manufacturing Age hardening Ageing Aging (artificial) Alloys Copper Copper base alloys Cr precipitates CuCrZr alloy Electron Beam Powder Bed Fusion Electron beams Forging Hardness Heat conductivity Heat exchangers Heat sinks Heat transfer Heat treating Heat treatment Heat treatments High vacuum Hot rolling Laser beams Microstructure Oxidation Parameter identification Powder Powder beds Precipitates Precipitation hardening Process parameters Thermal conductivity Zirconium |
title | Development of CuCrZr via Electron Beam Powder Bed Fusion (EB-PBF) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20CuCrZr%20via%20Electron%20Beam%20Powder%20Bed%20Fusion%20(EB-PBF)&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Ord%C3%A1s,%20Nerea&rft.date=2021-05&rft.volume=548&rft.spage=152841&rft.pages=152841-&rft.artnum=152841&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2021.152841&rft_dat=%3Cproquest_cross%3E2515756375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515756375&rft_id=info:pmid/&rft_els_id=S0022311521000647&rfr_iscdi=true |