Submanifolds in Koszul-Vinberg geometry
A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Abouqateb, Abdelhak Boucetta, Mohamed Bourzik, Charif |
description | A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2515489021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515489021</sourcerecordid><originalsourceid>FETCH-proquest_journals_25154890213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDy5Nyk3My0zLz0kpVsjMU_DOL64qzdENy8xLSi1KV0hPzc9NLSmq5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQ1MTC0sDI0Nj4lQBAI8uMAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515489021</pqid></control><display><type>article</type><title>Submanifolds in Koszul-Vinberg geometry</title><source>World Web Journals</source><creator>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</creator><creatorcontrib>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</creatorcontrib><description>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential geometry ; Geometry ; Manifolds (mathematics)</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Abouqateb, Abdelhak</creatorcontrib><creatorcontrib>Boucetta, Mohamed</creatorcontrib><creatorcontrib>Bourzik, Charif</creatorcontrib><title>Submanifolds in Koszul-Vinberg geometry</title><title>arXiv.org</title><description>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</description><subject>Differential geometry</subject><subject>Geometry</subject><subject>Manifolds (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDy5Nyk3My0zLz0kpVsjMU_DOL64qzdENy8xLSi1KV0hPzc9NLSmq5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQ1MTC0sDI0Nj4lQBAI8uMAI</recordid><startdate>20210418</startdate><enddate>20210418</enddate><creator>Abouqateb, Abdelhak</creator><creator>Boucetta, Mohamed</creator><creator>Bourzik, Charif</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210418</creationdate><title>Submanifolds in Koszul-Vinberg geometry</title><author>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25154890213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential geometry</topic><topic>Geometry</topic><topic>Manifolds (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Abouqateb, Abdelhak</creatorcontrib><creatorcontrib>Boucetta, Mohamed</creatorcontrib><creatorcontrib>Bourzik, Charif</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abouqateb, Abdelhak</au><au>Boucetta, Mohamed</au><au>Bourzik, Charif</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Submanifolds in Koszul-Vinberg geometry</atitle><jtitle>arXiv.org</jtitle><date>2021-04-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2515489021 |
source | World Web Journals |
subjects | Differential geometry Geometry Manifolds (mathematics) |
title | Submanifolds in Koszul-Vinberg geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Submanifolds%20in%20Koszul-Vinberg%20geometry&rft.jtitle=arXiv.org&rft.au=Abouqateb,%20Abdelhak&rft.date=2021-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2515489021%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515489021&rft_id=info:pmid/&rfr_iscdi=true |