Submanifolds in Koszul-Vinberg geometry

A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Abouqateb, Abdelhak, Boucetta, Mohamed, Bourzik, Charif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Abouqateb, Abdelhak
Boucetta, Mohamed
Bourzik, Charif
description A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2515489021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515489021</sourcerecordid><originalsourceid>FETCH-proquest_journals_25154890213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDy5Nyk3My0zLz0kpVsjMU_DOL64qzdENy8xLSi1KV0hPzc9NLSmq5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQ1MTC0sDI0Nj4lQBAI8uMAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515489021</pqid></control><display><type>article</type><title>Submanifolds in Koszul-Vinberg geometry</title><source>World Web Journals</source><creator>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</creator><creatorcontrib>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</creatorcontrib><description>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential geometry ; Geometry ; Manifolds (mathematics)</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Abouqateb, Abdelhak</creatorcontrib><creatorcontrib>Boucetta, Mohamed</creatorcontrib><creatorcontrib>Bourzik, Charif</creatorcontrib><title>Submanifolds in Koszul-Vinberg geometry</title><title>arXiv.org</title><description>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</description><subject>Differential geometry</subject><subject>Geometry</subject><subject>Manifolds (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDy5Nyk3My0zLz0kpVsjMU_DOL64qzdENy8xLSi1KV0hPzc9NLSmq5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTQ1MTC0sDI0Nj4lQBAI8uMAI</recordid><startdate>20210418</startdate><enddate>20210418</enddate><creator>Abouqateb, Abdelhak</creator><creator>Boucetta, Mohamed</creator><creator>Bourzik, Charif</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210418</creationdate><title>Submanifolds in Koszul-Vinberg geometry</title><author>Abouqateb, Abdelhak ; Boucetta, Mohamed ; Bourzik, Charif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25154890213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential geometry</topic><topic>Geometry</topic><topic>Manifolds (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Abouqateb, Abdelhak</creatorcontrib><creatorcontrib>Boucetta, Mohamed</creatorcontrib><creatorcontrib>Bourzik, Charif</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abouqateb, Abdelhak</au><au>Boucetta, Mohamed</au><au>Bourzik, Charif</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Submanifolds in Koszul-Vinberg geometry</atitle><jtitle>arXiv.org</jtitle><date>2021-04-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A Koszul-Vinberg manifold is a manifold \(M\) endowed with a pair \((\nabla,h)\) where \(\nabla\) is a flat connection and \(h\) is a symmetric bivector field satisfying a generalized Codazzi equation. The geometry of such manifolds could be seen as a type of bridge between Poisson geometry and pseudo-Riemannian geometry, as has been highlighted in our previous article [\textit{Contravariant Pseudo-Hessian manifolds and their associated Poisson structures}. \rm{Differential Geometry and its Applications} (2020)]. Our objective here will be to pursue our study by focusing in this setting on submanifolds by taking into account some developments in the theory of Poisson submanifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2515489021
source World Web Journals
subjects Differential geometry
Geometry
Manifolds (mathematics)
title Submanifolds in Koszul-Vinberg geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Submanifolds%20in%20Koszul-Vinberg%20geometry&rft.jtitle=arXiv.org&rft.au=Abouqateb,%20Abdelhak&rft.date=2021-04-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2515489021%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515489021&rft_id=info:pmid/&rfr_iscdi=true