Gesture recognition device based on cross reticulated graphene strain sensors

Perception and recognition of hand gestures have received much attention for their applications in the human–computer fields. The data-glove application in gesture recognition makes it expediently to track the movements of human fingers. Whereas, the development of the data-glove for hand gesture st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-04, Vol.32 (7), p.8410-8417
Hauptverfasser: Yuan, Linlin, Qi, Weiye, Cai, Kaiyu, Li, Chunhua, Qian, Qiuping, Zhou, Yunlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8417
container_issue 7
container_start_page 8410
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Yuan, Linlin
Qi, Weiye
Cai, Kaiyu
Li, Chunhua
Qian, Qiuping
Zhou, Yunlong
description Perception and recognition of hand gestures have received much attention for their applications in the human–computer fields. The data-glove application in gesture recognition makes it expediently to track the movements of human fingers. Whereas, the development of the data-glove for hand gesture still face numerous technical difficulties, such as the sensitivity, flexible ability, and system integration under low-cost. In this paper, a simple gesture recognition glove system was developed to characterize the sign language, which consists of cross reticulated graphene (CRG) flexible sensors, a multi-channel data acquisition module, and an artificial neural network algorithm. The designed acquisition module has several channels, so that signs from five sensors can be collected and transferred to the intelligent terminal to execute the hand gesture recognition algorithm. Besides, the recognition results suggest that the recognition rate of the neural network for 22 letters in the English alphabet can reach more than 90% and the overall recognition has an over 86% accuracy.
doi_str_mv 10.1007/s10854-021-05448-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515485616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515485616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e38365009839bc2530c8991c124214763c8ece9a00e64cd6d16cc86311f91b73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz9GZfG1ylKJVqHhR8Ba22WndUndrsiv13xu7gjdPwwzP-87My9gFwhUClNcJwWrFQSAHrZTluwM2QV1Krqx4PWQTcLrkSgtxzE5SWgOAUdJO2OOMUj9EKiKFbtU2fdO1RU2fTaBiUSWqi9yH2KWUib4Jw6bq83AVq-0btVSkPlZNWyRqUxfTGTtaVptE57_1lL3c3T5P7_n8afYwvZnzINH13JC00mgAZ6VbBKElBOscBhRKoCqNDJYCuQqAjAq1qdGEYI1EXDpclPKUXY6-29h9DPkDv-6G2OaVXmjUymqDJlNipPb3R1r6bWzeq_jlEfxPbH6MzefY_D42v8siOYpShtsVxT_rf1TfFcxwYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515485616</pqid></control><display><type>article</type><title>Gesture recognition device based on cross reticulated graphene strain sensors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Linlin ; Qi, Weiye ; Cai, Kaiyu ; Li, Chunhua ; Qian, Qiuping ; Zhou, Yunlong</creator><creatorcontrib>Yuan, Linlin ; Qi, Weiye ; Cai, Kaiyu ; Li, Chunhua ; Qian, Qiuping ; Zhou, Yunlong</creatorcontrib><description>Perception and recognition of hand gestures have received much attention for their applications in the human–computer fields. The data-glove application in gesture recognition makes it expediently to track the movements of human fingers. Whereas, the development of the data-glove for hand gesture still face numerous technical difficulties, such as the sensitivity, flexible ability, and system integration under low-cost. In this paper, a simple gesture recognition glove system was developed to characterize the sign language, which consists of cross reticulated graphene (CRG) flexible sensors, a multi-channel data acquisition module, and an artificial neural network algorithm. The designed acquisition module has several channels, so that signs from five sensors can be collected and transferred to the intelligent terminal to execute the hand gesture recognition algorithm. Besides, the recognition results suggest that the recognition rate of the neural network for 22 letters in the English alphabet can reach more than 90% and the overall recognition has an over 86% accuracy.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05448-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Flexible components ; Gesture recognition ; Graphene ; Materials Science ; Modules ; Neural networks ; Optical and Electronic Materials ; Sensors</subject><ispartof>Journal of materials science. Materials in electronics, 2021-04, Vol.32 (7), p.8410-8417</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e38365009839bc2530c8991c124214763c8ece9a00e64cd6d16cc86311f91b73</citedby><cites>FETCH-LOGICAL-c319t-6e38365009839bc2530c8991c124214763c8ece9a00e64cd6d16cc86311f91b73</cites><orcidid>0000-0001-5654-1170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05448-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05448-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Yuan, Linlin</creatorcontrib><creatorcontrib>Qi, Weiye</creatorcontrib><creatorcontrib>Cai, Kaiyu</creatorcontrib><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Qian, Qiuping</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><title>Gesture recognition device based on cross reticulated graphene strain sensors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Perception and recognition of hand gestures have received much attention for their applications in the human–computer fields. The data-glove application in gesture recognition makes it expediently to track the movements of human fingers. Whereas, the development of the data-glove for hand gesture still face numerous technical difficulties, such as the sensitivity, flexible ability, and system integration under low-cost. In this paper, a simple gesture recognition glove system was developed to characterize the sign language, which consists of cross reticulated graphene (CRG) flexible sensors, a multi-channel data acquisition module, and an artificial neural network algorithm. The designed acquisition module has several channels, so that signs from five sensors can be collected and transferred to the intelligent terminal to execute the hand gesture recognition algorithm. Besides, the recognition results suggest that the recognition rate of the neural network for 22 letters in the English alphabet can reach more than 90% and the overall recognition has an over 86% accuracy.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Flexible components</subject><subject>Gesture recognition</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Optical and Electronic Materials</subject><subject>Sensors</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz9GZfG1ylKJVqHhR8Ba22WndUndrsiv13xu7gjdPwwzP-87My9gFwhUClNcJwWrFQSAHrZTluwM2QV1Krqx4PWQTcLrkSgtxzE5SWgOAUdJO2OOMUj9EKiKFbtU2fdO1RU2fTaBiUSWqi9yH2KWUib4Jw6bq83AVq-0btVSkPlZNWyRqUxfTGTtaVptE57_1lL3c3T5P7_n8afYwvZnzINH13JC00mgAZ6VbBKElBOscBhRKoCqNDJYCuQqAjAq1qdGEYI1EXDpclPKUXY6-29h9DPkDv-6G2OaVXmjUymqDJlNipPb3R1r6bWzeq_jlEfxPbH6MzefY_D42v8siOYpShtsVxT_rf1TfFcxwYA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yuan, Linlin</creator><creator>Qi, Weiye</creator><creator>Cai, Kaiyu</creator><creator>Li, Chunhua</creator><creator>Qian, Qiuping</creator><creator>Zhou, Yunlong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5654-1170</orcidid></search><sort><creationdate>20210401</creationdate><title>Gesture recognition device based on cross reticulated graphene strain sensors</title><author>Yuan, Linlin ; Qi, Weiye ; Cai, Kaiyu ; Li, Chunhua ; Qian, Qiuping ; Zhou, Yunlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e38365009839bc2530c8991c124214763c8ece9a00e64cd6d16cc86311f91b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Flexible components</topic><topic>Gesture recognition</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Optical and Electronic Materials</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Linlin</creatorcontrib><creatorcontrib>Qi, Weiye</creatorcontrib><creatorcontrib>Cai, Kaiyu</creatorcontrib><creatorcontrib>Li, Chunhua</creatorcontrib><creatorcontrib>Qian, Qiuping</creatorcontrib><creatorcontrib>Zhou, Yunlong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Linlin</au><au>Qi, Weiye</au><au>Cai, Kaiyu</au><au>Li, Chunhua</au><au>Qian, Qiuping</au><au>Zhou, Yunlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gesture recognition device based on cross reticulated graphene strain sensors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>32</volume><issue>7</issue><spage>8410</spage><epage>8417</epage><pages>8410-8417</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Perception and recognition of hand gestures have received much attention for their applications in the human–computer fields. The data-glove application in gesture recognition makes it expediently to track the movements of human fingers. Whereas, the development of the data-glove for hand gesture still face numerous technical difficulties, such as the sensitivity, flexible ability, and system integration under low-cost. In this paper, a simple gesture recognition glove system was developed to characterize the sign language, which consists of cross reticulated graphene (CRG) flexible sensors, a multi-channel data acquisition module, and an artificial neural network algorithm. The designed acquisition module has several channels, so that signs from five sensors can be collected and transferred to the intelligent terminal to execute the hand gesture recognition algorithm. Besides, the recognition results suggest that the recognition rate of the neural network for 22 letters in the English alphabet can reach more than 90% and the overall recognition has an over 86% accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05448-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5654-1170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-04, Vol.32 (7), p.8410-8417
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2515485616
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Flexible components
Gesture recognition
Graphene
Materials Science
Modules
Neural networks
Optical and Electronic Materials
Sensors
title Gesture recognition device based on cross reticulated graphene strain sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gesture%20recognition%20device%20based%20on%20cross%20reticulated%20graphene%20strain%20sensors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Yuan,%20Linlin&rft.date=2021-04-01&rft.volume=32&rft.issue=7&rft.spage=8410&rft.epage=8417&rft.pages=8410-8417&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05448-x&rft_dat=%3Cproquest_cross%3E2515485616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515485616&rft_id=info:pmid/&rfr_iscdi=true