Credit scoring model using MARS method to comply with FSA regulation
Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical me...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-04, Vol.1869 (1), p.12135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12135 |
container_title | Journal of physics. Conference series |
container_volume | 1869 |
creator | Afrilia, A Joharudin, A Zaky, M Budiman, B Fauziah, M |
description | Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance. |
doi_str_mv | 10.1088/1742-6596/1869/1/012135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515169526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515169526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKefwYDPtUmaf30c06kwEZw-hyy53TraZSYtsm9vy2Tn5R44h3vgh9A9JY-UaJ1TxVkmRSlzqmWZ05xQRgtxgSbn5PLstb5GNyntCCkGqQl6mkfwdYeTC7Heb3AbPDS4T6N_n32ucAvdNnjcBexCe2iO-LfutnixmuEIm76xXR32t-iqsk2Cu_87Rd-L56_5a7b8eHmbz5aZY1yLzIFlwgutrOPSFXYtpVCUc8ZL5UArDsWaCA9MidJpW3lnvWIVqaAS1Foopujh9PcQw08PqTO70Mf9MGmYoILKUjA5tNSp5WJIKUJlDrFubTwaSsyIzIwwzAjGjMgMNSdkxR8SeF51</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515169526</pqid></control><display><type>article</type><title>Credit scoring model using MARS method to comply with FSA regulation</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</creator><creatorcontrib>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</creatorcontrib><description>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1869/1/012135</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Credit ratings ; Environmental impact ; Finance ; Model testing ; Physics ; Scoring models ; Statistical analysis ; Statistical methods</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12135</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Afrilia, A</creatorcontrib><creatorcontrib>Joharudin, A</creatorcontrib><creatorcontrib>Zaky, M</creatorcontrib><creatorcontrib>Budiman, B</creatorcontrib><creatorcontrib>Fauziah, M</creatorcontrib><title>Credit scoring model using MARS method to comply with FSA regulation</title><title>Journal of physics. Conference series</title><description>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</description><subject>Credit ratings</subject><subject>Environmental impact</subject><subject>Finance</subject><subject>Model testing</subject><subject>Physics</subject><subject>Scoring models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kF9LwzAUxYMoOKefwYDPtUmaf30c06kwEZw-hyy53TraZSYtsm9vy2Tn5R44h3vgh9A9JY-UaJ1TxVkmRSlzqmWZ05xQRgtxgSbn5PLstb5GNyntCCkGqQl6mkfwdYeTC7Heb3AbPDS4T6N_n32ucAvdNnjcBexCe2iO-LfutnixmuEIm76xXR32t-iqsk2Cu_87Rd-L56_5a7b8eHmbz5aZY1yLzIFlwgutrOPSFXYtpVCUc8ZL5UArDsWaCA9MidJpW3lnvWIVqaAS1Foopujh9PcQw08PqTO70Mf9MGmYoILKUjA5tNSp5WJIKUJlDrFubTwaSsyIzIwwzAjGjMgMNSdkxR8SeF51</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Afrilia, A</creator><creator>Joharudin, A</creator><creator>Zaky, M</creator><creator>Budiman, B</creator><creator>Fauziah, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Credit scoring model using MARS method to comply with FSA regulation</title><author>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Credit ratings</topic><topic>Environmental impact</topic><topic>Finance</topic><topic>Model testing</topic><topic>Physics</topic><topic>Scoring models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afrilia, A</creatorcontrib><creatorcontrib>Joharudin, A</creatorcontrib><creatorcontrib>Zaky, M</creatorcontrib><creatorcontrib>Budiman, B</creatorcontrib><creatorcontrib>Fauziah, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afrilia, A</au><au>Joharudin, A</au><au>Zaky, M</au><au>Budiman, B</au><au>Fauziah, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credit scoring model using MARS method to comply with FSA regulation</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1869</volume><issue>1</issue><spage>12135</spage><pages>12135-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1869/1/012135</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12135 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2515169526 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Credit ratings Environmental impact Finance Model testing Physics Scoring models Statistical analysis Statistical methods |
title | Credit scoring model using MARS method to comply with FSA regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credit%20scoring%20model%20using%20MARS%20method%20to%20comply%20with%20FSA%20regulation&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Afrilia,%20A&rft.date=2021-04-01&rft.volume=1869&rft.issue=1&rft.spage=12135&rft.pages=12135-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1869/1/012135&rft_dat=%3Cproquest_cross%3E2515169526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515169526&rft_id=info:pmid/&rfr_iscdi=true |