Credit scoring model using MARS method to comply with FSA regulation

Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1869 (1), p.12135
Hauptverfasser: Afrilia, A, Joharudin, A, Zaky, M, Budiman, B, Fauziah, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12135
container_title Journal of physics. Conference series
container_volume 1869
creator Afrilia, A
Joharudin, A
Zaky, M
Budiman, B
Fauziah, M
description Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.
doi_str_mv 10.1088/1742-6596/1869/1/012135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515169526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515169526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKefwYDPtUmaf30c06kwEZw-hyy53TraZSYtsm9vy2Tn5R44h3vgh9A9JY-UaJ1TxVkmRSlzqmWZ05xQRgtxgSbn5PLstb5GNyntCCkGqQl6mkfwdYeTC7Heb3AbPDS4T6N_n32ucAvdNnjcBexCe2iO-LfutnixmuEIm76xXR32t-iqsk2Cu_87Rd-L56_5a7b8eHmbz5aZY1yLzIFlwgutrOPSFXYtpVCUc8ZL5UArDsWaCA9MidJpW3lnvWIVqaAS1Foopujh9PcQw08PqTO70Mf9MGmYoILKUjA5tNSp5WJIKUJlDrFubTwaSsyIzIwwzAjGjMgMNSdkxR8SeF51</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515169526</pqid></control><display><type>article</type><title>Credit scoring model using MARS method to comply with FSA regulation</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</creator><creatorcontrib>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</creatorcontrib><description>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1869/1/012135</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Credit ratings ; Environmental impact ; Finance ; Model testing ; Physics ; Scoring models ; Statistical analysis ; Statistical methods</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12135</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Afrilia, A</creatorcontrib><creatorcontrib>Joharudin, A</creatorcontrib><creatorcontrib>Zaky, M</creatorcontrib><creatorcontrib>Budiman, B</creatorcontrib><creatorcontrib>Fauziah, M</creatorcontrib><title>Credit scoring model using MARS method to comply with FSA regulation</title><title>Journal of physics. Conference series</title><description>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</description><subject>Credit ratings</subject><subject>Environmental impact</subject><subject>Finance</subject><subject>Model testing</subject><subject>Physics</subject><subject>Scoring models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kF9LwzAUxYMoOKefwYDPtUmaf30c06kwEZw-hyy53TraZSYtsm9vy2Tn5R44h3vgh9A9JY-UaJ1TxVkmRSlzqmWZ05xQRgtxgSbn5PLstb5GNyntCCkGqQl6mkfwdYeTC7Heb3AbPDS4T6N_n32ucAvdNnjcBexCe2iO-LfutnixmuEIm76xXR32t-iqsk2Cu_87Rd-L56_5a7b8eHmbz5aZY1yLzIFlwgutrOPSFXYtpVCUc8ZL5UArDsWaCA9MidJpW3lnvWIVqaAS1Foopujh9PcQw08PqTO70Mf9MGmYoILKUjA5tNSp5WJIKUJlDrFubTwaSsyIzIwwzAjGjMgMNSdkxR8SeF51</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Afrilia, A</creator><creator>Joharudin, A</creator><creator>Zaky, M</creator><creator>Budiman, B</creator><creator>Fauziah, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Credit scoring model using MARS method to comply with FSA regulation</title><author>Afrilia, A ; Joharudin, A ; Zaky, M ; Budiman, B ; Fauziah, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2485-cea25d587ac46c3ab66571442497ce874e3b05de2759c8afdcad72f0fef51aae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Credit ratings</topic><topic>Environmental impact</topic><topic>Finance</topic><topic>Model testing</topic><topic>Physics</topic><topic>Scoring models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afrilia, A</creatorcontrib><creatorcontrib>Joharudin, A</creatorcontrib><creatorcontrib>Zaky, M</creatorcontrib><creatorcontrib>Budiman, B</creatorcontrib><creatorcontrib>Fauziah, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afrilia, A</au><au>Joharudin, A</au><au>Zaky, M</au><au>Budiman, B</au><au>Fauziah, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credit scoring model using MARS method to comply with FSA regulation</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1869</volume><issue>1</issue><spage>12135</spage><pages>12135-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Financial Service Authority (FSA) introduced a new policy on Sustainable Finance to financial institutions such as Banks. It is currently a hot issue that needs to be implemented in the selection process of potential debtors. Consequently, the credit rating system needs to be renewed. Statistical methods can help to include permits and environmental impact in the selection process. Thus, this study intends to formulate a credit rating model for productive debtors. This study used a quantitative method using Multivariate Adaptive Regression Splines (MARS). Our study’s significant finding is that the credit rating model for productive debtors that have been formulated has type I error of 0.00% and type II error of 0.54%. Furthermore, the authors believe that this model can be used to asses potential debtors’ credit rating while adhering to the policy of Sustainable Finance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1869/1/012135</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12135
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2515169526
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Credit ratings
Environmental impact
Finance
Model testing
Physics
Scoring models
Statistical analysis
Statistical methods
title Credit scoring model using MARS method to comply with FSA regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credit%20scoring%20model%20using%20MARS%20method%20to%20comply%20with%20FSA%20regulation&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Afrilia,%20A&rft.date=2021-04-01&rft.volume=1869&rft.issue=1&rft.spage=12135&rft.pages=12135-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1869/1/012135&rft_dat=%3Cproquest_cross%3E2515169526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515169526&rft_id=info:pmid/&rfr_iscdi=true