A review of data mining methods in RFM-based customer segmentation

Data mining (DM) is the process of extracting knowledge from data. Knowledge from customer behaviour segmentation is useful for companies in setting the target market and developing a marketing strategy. Recency Frequency Monetary (RFM) model is the most behaviour segmentation used. Many customer-se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1869 (1), p.12085
Hauptverfasser: Ernawati, E, Baharin, S S K, Kasmin, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12085
container_title Journal of physics. Conference series
container_volume 1869
creator Ernawati, E
Baharin, S S K
Kasmin, F
description Data mining (DM) is the process of extracting knowledge from data. Knowledge from customer behaviour segmentation is useful for companies in setting the target market and developing a marketing strategy. Recency Frequency Monetary (RFM) model is the most behaviour segmentation used. Many customer-segmentation studies in various application areas use the RFM model that collaborates with DM. With many methods in DM, the selection of appropriate methods can reveal useful hidden patterns in customer segments. This paper aims to analyse DM methods that collaborate with the RFM model and synthesize them to propose a customer segmentation framework. This study uses a comprehensive literature review published in 2015-2020. The most widely used methods are clustering and visualization from seven DM methods analysed. Due to the increased visualization function and the need for customers’ geo-demographic data to be considered in the analysis, this study presents a new framework for using DM methods with the RFM based segmentation in the Geographic Information Systems (GIS) environment. This framework helps analysts utilize DM methods to uncover and understand customer characteristics, so companies can set the target market and develop a marketing strategy to increase their competitive advantage.
doi_str_mv 10.1088/1742-6596/1869/1/012085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2925-c8fff847a022c65b49eba5e974a6fab601b625d5d95a084cd5126027ff9f21153</originalsourceid><addsrcrecordid>eNo90N9LwzAQB_AgCs7p32DA59pc2vx6nMOpMBFEn0PaJrPDNjNJFf97Wyq7lzu4L3fwQegayC0QKXMQJc04UzwHyVUOOQFKJDtBi-Pm9DhLeY4uYtwTUowlFuhuhYP9bu0P9g43JhnctX3b73Bn04dvIm57_Lp5zioTbYPrISbf2YCj3XW2Tya1vr9EZ858Rnv135fofXP_tn7Mti8PT-vVNqupoiyrpXNOlsIQSmvOqlLZyjCrRGm4MxUnUHHKGtYoZogs64YB5YQK55SjAKxYopv57iH4r8HGpPd-CP34UlMGDLjkgo8pMafq4GMM1ulDaDsTfjUQPYHpiUJPLHoC06BnsOIPAIldCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168676</pqid></control><display><type>article</type><title>A review of data mining methods in RFM-based customer segmentation</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ernawati, E ; Baharin, S S K ; Kasmin, F</creator><creatorcontrib>Ernawati, E ; Baharin, S S K ; Kasmin, F</creatorcontrib><description>Data mining (DM) is the process of extracting knowledge from data. Knowledge from customer behaviour segmentation is useful for companies in setting the target market and developing a marketing strategy. Recency Frequency Monetary (RFM) model is the most behaviour segmentation used. Many customer-segmentation studies in various application areas use the RFM model that collaborates with DM. With many methods in DM, the selection of appropriate methods can reveal useful hidden patterns in customer segments. This paper aims to analyse DM methods that collaborate with the RFM model and synthesize them to propose a customer segmentation framework. This study uses a comprehensive literature review published in 2015-2020. The most widely used methods are clustering and visualization from seven DM methods analysed. Due to the increased visualization function and the need for customers’ geo-demographic data to be considered in the analysis, this study presents a new framework for using DM methods with the RFM based segmentation in the Geographic Information Systems (GIS) environment. This framework helps analysts utilize DM methods to uncover and understand customer characteristics, so companies can set the target market and develop a marketing strategy to increase their competitive advantage.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1869/1/012085</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Business competition ; Clustering ; Customers ; Data mining ; Geographic information systems ; Literature reviews ; Market strategy ; Marketing ; Model testing ; Physics ; Segmentation ; Strategy ; Target markets ; Visualization</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12085</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2925-c8fff847a022c65b49eba5e974a6fab601b625d5d95a084cd5126027ff9f21153</citedby><cites>FETCH-LOGICAL-c2925-c8fff847a022c65b49eba5e974a6fab601b625d5d95a084cd5126027ff9f21153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ernawati, E</creatorcontrib><creatorcontrib>Baharin, S S K</creatorcontrib><creatorcontrib>Kasmin, F</creatorcontrib><title>A review of data mining methods in RFM-based customer segmentation</title><title>Journal of physics. Conference series</title><description>Data mining (DM) is the process of extracting knowledge from data. Knowledge from customer behaviour segmentation is useful for companies in setting the target market and developing a marketing strategy. Recency Frequency Monetary (RFM) model is the most behaviour segmentation used. Many customer-segmentation studies in various application areas use the RFM model that collaborates with DM. With many methods in DM, the selection of appropriate methods can reveal useful hidden patterns in customer segments. This paper aims to analyse DM methods that collaborate with the RFM model and synthesize them to propose a customer segmentation framework. This study uses a comprehensive literature review published in 2015-2020. The most widely used methods are clustering and visualization from seven DM methods analysed. Due to the increased visualization function and the need for customers’ geo-demographic data to be considered in the analysis, this study presents a new framework for using DM methods with the RFM based segmentation in the Geographic Information Systems (GIS) environment. This framework helps analysts utilize DM methods to uncover and understand customer characteristics, so companies can set the target market and develop a marketing strategy to increase their competitive advantage.</description><subject>Business competition</subject><subject>Clustering</subject><subject>Customers</subject><subject>Data mining</subject><subject>Geographic information systems</subject><subject>Literature reviews</subject><subject>Market strategy</subject><subject>Marketing</subject><subject>Model testing</subject><subject>Physics</subject><subject>Segmentation</subject><subject>Strategy</subject><subject>Target markets</subject><subject>Visualization</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo90N9LwzAQB_AgCs7p32DA59pc2vx6nMOpMBFEn0PaJrPDNjNJFf97Wyq7lzu4L3fwQegayC0QKXMQJc04UzwHyVUOOQFKJDtBi-Pm9DhLeY4uYtwTUowlFuhuhYP9bu0P9g43JhnctX3b73Bn04dvIm57_Lp5zioTbYPrISbf2YCj3XW2Tya1vr9EZ858Rnv135fofXP_tn7Mti8PT-vVNqupoiyrpXNOlsIQSmvOqlLZyjCrRGm4MxUnUHHKGtYoZogs64YB5YQK55SjAKxYopv57iH4r8HGpPd-CP34UlMGDLjkgo8pMafq4GMM1ulDaDsTfjUQPYHpiUJPLHoC06BnsOIPAIldCg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Ernawati, E</creator><creator>Baharin, S S K</creator><creator>Kasmin, F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>A review of data mining methods in RFM-based customer segmentation</title><author>Ernawati, E ; Baharin, S S K ; Kasmin, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2925-c8fff847a022c65b49eba5e974a6fab601b625d5d95a084cd5126027ff9f21153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Business competition</topic><topic>Clustering</topic><topic>Customers</topic><topic>Data mining</topic><topic>Geographic information systems</topic><topic>Literature reviews</topic><topic>Market strategy</topic><topic>Marketing</topic><topic>Model testing</topic><topic>Physics</topic><topic>Segmentation</topic><topic>Strategy</topic><topic>Target markets</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernawati, E</creatorcontrib><creatorcontrib>Baharin, S S K</creatorcontrib><creatorcontrib>Kasmin, F</creatorcontrib><collection>CrossRef</collection><collection>Entrepreneurship Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernawati, E</au><au>Baharin, S S K</au><au>Kasmin, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of data mining methods in RFM-based customer segmentation</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1869</volume><issue>1</issue><spage>12085</spage><pages>12085-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Data mining (DM) is the process of extracting knowledge from data. Knowledge from customer behaviour segmentation is useful for companies in setting the target market and developing a marketing strategy. Recency Frequency Monetary (RFM) model is the most behaviour segmentation used. Many customer-segmentation studies in various application areas use the RFM model that collaborates with DM. With many methods in DM, the selection of appropriate methods can reveal useful hidden patterns in customer segments. This paper aims to analyse DM methods that collaborate with the RFM model and synthesize them to propose a customer segmentation framework. This study uses a comprehensive literature review published in 2015-2020. The most widely used methods are clustering and visualization from seven DM methods analysed. Due to the increased visualization function and the need for customers’ geo-demographic data to be considered in the analysis, this study presents a new framework for using DM methods with the RFM based segmentation in the Geographic Information Systems (GIS) environment. This framework helps analysts utilize DM methods to uncover and understand customer characteristics, so companies can set the target market and develop a marketing strategy to increase their competitive advantage.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1869/1/012085</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12085
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2515168676
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Business competition
Clustering
Customers
Data mining
Geographic information systems
Literature reviews
Market strategy
Marketing
Model testing
Physics
Segmentation
Strategy
Target markets
Visualization
title A review of data mining methods in RFM-based customer segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20data%20mining%20methods%20in%20RFM-based%20customer%20segmentation&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ernawati,%20E&rft.date=2021-04-01&rft.volume=1869&rft.issue=1&rft.spage=12085&rft.pages=12085-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1869/1/012085&rft_dat=%3Cproquest_cross%3E2515168676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168676&rft_id=info:pmid/&rfr_iscdi=true