General Fourier coefficients and convergence almost everywhere
We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that...
Gespeichert in:
Veröffentlicht in: | Izvestiya. Mathematics 2021-04, Vol.85 (2), p.228-240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 2 |
container_start_page | 228 |
container_title | Izvestiya. Mathematics |
container_volume | 85 |
creator | Gogoladze, L. D. Cagareishvili, G. |
description | We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1]. |
doi_str_mv | 10.1070/IM8985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrfobFgRvq3lvchGk2FqoeNFzyOOLbtnu1mSr9N83pZ5mGIaZYRC6JfiB4AY_Lt-UVuIMTQiXquaK4PPCseS1kIxeoquc1xhjzgmboKcF9JBsV82HXWohVX6AGFvfQj_myvahCP0vpC_oPVS22wx5rKAI-79vSHCNLqLtMtz84xR9zl8-Zq_16n2xnD2vak8FGWtOndKMxtA02ofGWcogSMI8K5OEkFwzzJ2ImjsSaeSS02CVA26Dp04LNkV3p9xtGn52kEezLnv7UmlKgSBSSXp03Z9cPg05J4hmm9qNTXtDsDl-Y07fsAMl-FVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168625</pqid></control><display><type>article</type><title>General Fourier coefficients and convergence almost everywhere</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Gogoladze, L. D. ; Cagareishvili, G.</creator><creatorcontrib>Gogoladze, L. D. ; Cagareishvili, G.</creatorcontrib><description>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8985</identifier><language>eng</language><publisher>Providence: IOP Publishing</publisher><subject>Coefficient of variation ; Hypotheses ; Subsystems ; Theorems</subject><ispartof>Izvestiya. Mathematics, 2021-04, Vol.85 (2), p.228-240</ispartof><rights>Copyright IOP Publishing Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</citedby><cites>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Cagareishvili, G.</creatorcontrib><title>General Fourier coefficients and convergence almost everywhere</title><title>Izvestiya. Mathematics</title><description>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</description><subject>Coefficient of variation</subject><subject>Hypotheses</subject><subject>Subsystems</subject><subject>Theorems</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrfobFgRvq3lvchGk2FqoeNFzyOOLbtnu1mSr9N83pZ5mGIaZYRC6JfiB4AY_Lt-UVuIMTQiXquaK4PPCseS1kIxeoquc1xhjzgmboKcF9JBsV82HXWohVX6AGFvfQj_myvahCP0vpC_oPVS22wx5rKAI-79vSHCNLqLtMtz84xR9zl8-Zq_16n2xnD2vak8FGWtOndKMxtA02ofGWcogSMI8K5OEkFwzzJ2ImjsSaeSS02CVA26Dp04LNkV3p9xtGn52kEezLnv7UmlKgSBSSXp03Z9cPg05J4hmm9qNTXtDsDl-Y07fsAMl-FVS</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gogoladze, L. D.</creator><creator>Cagareishvili, G.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>General Fourier coefficients and convergence almost everywhere</title><author>Gogoladze, L. D. ; Cagareishvili, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficient of variation</topic><topic>Hypotheses</topic><topic>Subsystems</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Cagareishvili, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L. D.</au><au>Cagareishvili, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Fourier coefficients and convergence almost everywhere</atitle><jtitle>Izvestiya. Mathematics</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>85</volume><issue>2</issue><spage>228</spage><epage>240</epage><pages>228-240</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</abstract><cop>Providence</cop><pub>IOP Publishing</pub><doi>10.1070/IM8985</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5632 |
ispartof | Izvestiya. Mathematics, 2021-04, Vol.85 (2), p.228-240 |
issn | 1064-5632 1468-4810 |
language | eng |
recordid | cdi_proquest_journals_2515168625 |
source | Institute of Physics Journals; Alma/SFX Local Collection |
subjects | Coefficient of variation Hypotheses Subsystems Theorems |
title | General Fourier coefficients and convergence almost everywhere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Fourier%20coefficients%20and%20convergence%20almost%20everywhere&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Gogoladze,%20L.%20D.&rft.date=2021-04-01&rft.volume=85&rft.issue=2&rft.spage=228&rft.epage=240&rft.pages=228-240&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8985&rft_dat=%3Cproquest_cross%3E2515168625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168625&rft_id=info:pmid/&rfr_iscdi=true |