General Fourier coefficients and convergence almost everywhere

We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2021-04, Vol.85 (2), p.228-240
Hauptverfasser: Gogoladze, L. D., Cagareishvili, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 2
container_start_page 228
container_title Izvestiya. Mathematics
container_volume 85
creator Gogoladze, L. D.
Cagareishvili, G.
description We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].
doi_str_mv 10.1070/IM8985
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrfobFgRvq3lvchGk2FqoeNFzyOOLbtnu1mSr9N83pZ5mGIaZYRC6JfiB4AY_Lt-UVuIMTQiXquaK4PPCseS1kIxeoquc1xhjzgmboKcF9JBsV82HXWohVX6AGFvfQj_myvahCP0vpC_oPVS22wx5rKAI-79vSHCNLqLtMtz84xR9zl8-Zq_16n2xnD2vak8FGWtOndKMxtA02ofGWcogSMI8K5OEkFwzzJ2ImjsSaeSS02CVA26Dp04LNkV3p9xtGn52kEezLnv7UmlKgSBSSXp03Z9cPg05J4hmm9qNTXtDsDl-Y07fsAMl-FVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168625</pqid></control><display><type>article</type><title>General Fourier coefficients and convergence almost everywhere</title><source>Institute of Physics Journals</source><source>Alma/SFX Local Collection</source><creator>Gogoladze, L. D. ; Cagareishvili, G.</creator><creatorcontrib>Gogoladze, L. D. ; Cagareishvili, G.</creatorcontrib><description>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8985</identifier><language>eng</language><publisher>Providence: IOP Publishing</publisher><subject>Coefficient of variation ; Hypotheses ; Subsystems ; Theorems</subject><ispartof>Izvestiya. Mathematics, 2021-04, Vol.85 (2), p.228-240</ispartof><rights>Copyright IOP Publishing Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</citedby><cites>FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Cagareishvili, G.</creatorcontrib><title>General Fourier coefficients and convergence almost everywhere</title><title>Izvestiya. Mathematics</title><description>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</description><subject>Coefficient of variation</subject><subject>Hypotheses</subject><subject>Subsystems</subject><subject>Theorems</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUEtLAzEYDKJgrfobFgRvq3lvchGk2FqoeNFzyOOLbtnu1mSr9N83pZ5mGIaZYRC6JfiB4AY_Lt-UVuIMTQiXquaK4PPCseS1kIxeoquc1xhjzgmboKcF9JBsV82HXWohVX6AGFvfQj_myvahCP0vpC_oPVS22wx5rKAI-79vSHCNLqLtMtz84xR9zl8-Zq_16n2xnD2vak8FGWtOndKMxtA02ofGWcogSMI8K5OEkFwzzJ2ImjsSaeSS02CVA26Dp04LNkV3p9xtGn52kEezLnv7UmlKgSBSSXp03Z9cPg05J4hmm9qNTXtDsDl-Y07fsAMl-FVS</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gogoladze, L. D.</creator><creator>Cagareishvili, G.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>General Fourier coefficients and convergence almost everywhere</title><author>Gogoladze, L. D. ; Cagareishvili, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-42b8932fd779cd7ba23ed613c356355649304b5f94b1f2f4642da8be4adc2b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficient of variation</topic><topic>Hypotheses</topic><topic>Subsystems</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Cagareishvili, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L. D.</au><au>Cagareishvili, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Fourier coefficients and convergence almost everywhere</atitle><jtitle>Izvestiya. Mathematics</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>85</volume><issue>2</issue><spage>228</spage><epage>240</epage><pages>228-240</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We find sufficient conditions which are in a sense best possible that must be satisfied by the functions of an orthonormal system in order for the Fourier coefficients of functions of bounded variation to satisfy the hypotheses of the Men’shov–Rademacher theorem. We also prove a theorem saying that every system contains a subsystem with respect to which the Fourier coefficients of functions of bounded variation satisfy those hypotheses. The results obtained complement and generalize the corresponding results in [1].</abstract><cop>Providence</cop><pub>IOP Publishing</pub><doi>10.1070/IM8985</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5632
ispartof Izvestiya. Mathematics, 2021-04, Vol.85 (2), p.228-240
issn 1064-5632
1468-4810
language eng
recordid cdi_proquest_journals_2515168625
source Institute of Physics Journals; Alma/SFX Local Collection
subjects Coefficient of variation
Hypotheses
Subsystems
Theorems
title General Fourier coefficients and convergence almost everywhere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Fourier%20coefficients%20and%20convergence%20almost%20everywhere&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Gogoladze,%20L.%20D.&rft.date=2021-04-01&rft.volume=85&rft.issue=2&rft.spage=228&rft.epage=240&rft.pages=228-240&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8985&rft_dat=%3Cproquest_cross%3E2515168625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168625&rft_id=info:pmid/&rfr_iscdi=true