Encoding and decoding algorithms for unlabeled trees
Trees considered in this article, in which at least two receivers emanate from each internal vertex, are found in the works by E. Schroder, R. Stanley, O.V. Kuzmin, etc. Encoding and decoding algorithms for unlabeled planar rooted trees with a given number of end vertices, root receivers, and a sequ...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-03, Vol.1847 (1), p.12027 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12027 |
container_title | Journal of physics. Conference series |
container_volume | 1847 |
creator | Balagura, A A Kuzmin, O V |
description | Trees considered in this article, in which at least two receivers emanate from each internal vertex, are found in the works by E. Schroder, R. Stanley, O.V. Kuzmin, etc. Encoding and decoding algorithms for unlabeled planar rooted trees with a given number of end vertices, root receivers, and a sequence of degrees of internal tree vertices during depth-first search are built. Encoding is done in non-decreasing tuples, by assigning labels to the internal vertices of the tree. The proposed algorithms made it possible to prove the existence of a one-to-one correspondence between the studied set of trees and the set of non-decreasing tuples. To find the cardinality of a set of tuples, we used an approach based on the generalized Pascal pyramid. |
doi_str_mv | 10.1088/1742-6596/1847/1/012027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2497-b043567110c6807d86fb43e50863f20ac6dcadc1217479073fd69465d6004e23</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwG6jEudTOd49oGh_SJC67R22Sjk5dM5L2wL-nVWG-2JZf-bUfQh4RnhG0LlBxmktRygI1VwUWgBSouiKry-T6Umt9S-5SOgKwKdSK8G1vg2v7Q1b1LnP-v-kOIbbD1yllTYjZ2HdV7TvvsiF6n-7JTVN1yT_85TXZv273m_d89_n2sXnZ5ZbyUuU1cCakQgQrNSinZVNz5gVoyRoKlZXOVs4inY5TJSjWOFlyKZwE4J6yNXla1p5j-B59GswxjLGfHA0VKFBqoWeVWlQ2hpSib8w5tqcq_hgEMxMy8-9m5mBmQgbNQoj9Ao7yVvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168582</pqid></control><display><type>article</type><title>Encoding and decoding algorithms for unlabeled trees</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Balagura, A A ; Kuzmin, O V</creator><creatorcontrib>Balagura, A A ; Kuzmin, O V</creatorcontrib><description>Trees considered in this article, in which at least two receivers emanate from each internal vertex, are found in the works by E. Schroder, R. Stanley, O.V. Kuzmin, etc. Encoding and decoding algorithms for unlabeled planar rooted trees with a given number of end vertices, root receivers, and a sequence of degrees of internal tree vertices during depth-first search are built. Encoding is done in non-decreasing tuples, by assigning labels to the internal vertices of the tree. The proposed algorithms made it possible to prove the existence of a one-to-one correspondence between the studied set of trees and the set of non-decreasing tuples. To find the cardinality of a set of tuples, we used an approach based on the generalized Pascal pyramid.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1847/1/012027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Apexes ; Physics ; Receivers ; Trees (mathematics)</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1847 (1), p.12027</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2497-b043567110c6807d86fb43e50863f20ac6dcadc1217479073fd69465d6004e23</citedby><cites>FETCH-LOGICAL-c2497-b043567110c6807d86fb43e50863f20ac6dcadc1217479073fd69465d6004e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Balagura, A A</creatorcontrib><creatorcontrib>Kuzmin, O V</creatorcontrib><title>Encoding and decoding algorithms for unlabeled trees</title><title>Journal of physics. Conference series</title><description>Trees considered in this article, in which at least two receivers emanate from each internal vertex, are found in the works by E. Schroder, R. Stanley, O.V. Kuzmin, etc. Encoding and decoding algorithms for unlabeled planar rooted trees with a given number of end vertices, root receivers, and a sequence of degrees of internal tree vertices during depth-first search are built. Encoding is done in non-decreasing tuples, by assigning labels to the internal vertices of the tree. The proposed algorithms made it possible to prove the existence of a one-to-one correspondence between the studied set of trees and the set of non-decreasing tuples. To find the cardinality of a set of tuples, we used an approach based on the generalized Pascal pyramid.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Physics</subject><subject>Receivers</subject><subject>Trees (mathematics)</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwG6jEudTOd49oGh_SJC67R22Sjk5dM5L2wL-nVWG-2JZf-bUfQh4RnhG0LlBxmktRygI1VwUWgBSouiKry-T6Umt9S-5SOgKwKdSK8G1vg2v7Q1b1LnP-v-kOIbbD1yllTYjZ2HdV7TvvsiF6n-7JTVN1yT_85TXZv273m_d89_n2sXnZ5ZbyUuU1cCakQgQrNSinZVNz5gVoyRoKlZXOVs4inY5TJSjWOFlyKZwE4J6yNXla1p5j-B59GswxjLGfHA0VKFBqoWeVWlQ2hpSib8w5tqcq_hgEMxMy8-9m5mBmQgbNQoj9Ao7yVvI</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Balagura, A A</creator><creator>Kuzmin, O V</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Encoding and decoding algorithms for unlabeled trees</title><author>Balagura, A A ; Kuzmin, O V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2497-b043567110c6807d86fb43e50863f20ac6dcadc1217479073fd69465d6004e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Physics</topic><topic>Receivers</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balagura, A A</creatorcontrib><creatorcontrib>Kuzmin, O V</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balagura, A A</au><au>Kuzmin, O V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding and decoding algorithms for unlabeled trees</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1847</volume><issue>1</issue><spage>12027</spage><pages>12027-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Trees considered in this article, in which at least two receivers emanate from each internal vertex, are found in the works by E. Schroder, R. Stanley, O.V. Kuzmin, etc. Encoding and decoding algorithms for unlabeled planar rooted trees with a given number of end vertices, root receivers, and a sequence of degrees of internal tree vertices during depth-first search are built. Encoding is done in non-decreasing tuples, by assigning labels to the internal vertices of the tree. The proposed algorithms made it possible to prove the existence of a one-to-one correspondence between the studied set of trees and the set of non-decreasing tuples. To find the cardinality of a set of tuples, we used an approach based on the generalized Pascal pyramid.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1847/1/012027</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-03, Vol.1847 (1), p.12027 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2515168582 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Apexes Physics Receivers Trees (mathematics) |
title | Encoding and decoding algorithms for unlabeled trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20and%20decoding%20algorithms%20for%20unlabeled%20trees&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Balagura,%20A%20A&rft.date=2021-03-01&rft.volume=1847&rft.issue=1&rft.spage=12027&rft.pages=12027-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1847/1/012027&rft_dat=%3Cproquest_cross%3E2515168582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168582&rft_id=info:pmid/&rfr_iscdi=true |