Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning
Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-04, Vol.1869 (1), p.12092 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12092 |
container_title | Journal of physics. Conference series |
container_volume | 1869 |
creator | Swastika, W Kristianti, G M Widodo, R B |
description | Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture. |
doi_str_mv | 10.1088/1742-6596/1869/1/012092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</originalsourceid><addsrcrecordid>eNo9kFtLwzAUgIMoOKe_wYDPtbk0t0cZ0wkDX_Q5pO3J1tE1NekE_70pk-Ul55Av5_Ih9EjJMyVal1RVrJDCyJJqaUpaEsqIYVdocXm5vsRa36K7lA6E8HzUAu3X3kMzdT-AxwhjDA2kBC2e9t2A6z6EFqcjuIi7o9tBwlPIUcYyf3S9i53Do4sudRPgFqa5VBjwKXXDLucw4j5_HnJ2j2686xM8_N9L9PW6_lxtiu3H2_vqZVs0rDKsYFwoX3vqNfdVW9ccdFVzoxU4rWsFAI0ighomKm1YpSkXXOq65SrDSgJfoqdz3Tzk9wnSZA_hFIfc0jJBBZVaSJEpdaaaGFKK4O0Y84bx11JiZ612FmZneXbWaqk9a-V_9btsUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168565</pqid></control><display><type>article</type><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Swastika, W ; Kristianti, G M ; Widodo, R B</creator><creatorcontrib>Swastika, W ; Kristianti, G M ; Widodo, R B</creatorcontrib><description>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1869/1/012092</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Blood ; Deep learning ; Malaria ; Object recognition ; Physics ; Preprocessing</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12092</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</citedby><cites>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swastika, W</creatorcontrib><creatorcontrib>Kristianti, G M</creatorcontrib><creatorcontrib>Widodo, R B</creatorcontrib><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><title>Journal of physics. Conference series</title><description>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</description><subject>Artificial neural networks</subject><subject>Blood</subject><subject>Deep learning</subject><subject>Malaria</subject><subject>Object recognition</subject><subject>Physics</subject><subject>Preprocessing</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kFtLwzAUgIMoOKe_wYDPtbk0t0cZ0wkDX_Q5pO3J1tE1NekE_70pk-Ul55Av5_Ih9EjJMyVal1RVrJDCyJJqaUpaEsqIYVdocXm5vsRa36K7lA6E8HzUAu3X3kMzdT-AxwhjDA2kBC2e9t2A6z6EFqcjuIi7o9tBwlPIUcYyf3S9i53Do4sudRPgFqa5VBjwKXXDLucw4j5_HnJ2j2686xM8_N9L9PW6_lxtiu3H2_vqZVs0rDKsYFwoX3vqNfdVW9ccdFVzoxU4rWsFAI0ighomKm1YpSkXXOq65SrDSgJfoqdz3Tzk9wnSZA_hFIfc0jJBBZVaSJEpdaaaGFKK4O0Y84bx11JiZ612FmZneXbWaqk9a-V_9btsUg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Swastika, W</creator><creator>Kristianti, G M</creator><creator>Widodo, R B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><author>Swastika, W ; Kristianti, G M ; Widodo, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Blood</topic><topic>Deep learning</topic><topic>Malaria</topic><topic>Object recognition</topic><topic>Physics</topic><topic>Preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swastika, W</creatorcontrib><creatorcontrib>Kristianti, G M</creatorcontrib><creatorcontrib>Widodo, R B</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swastika, W</au><au>Kristianti, G M</au><au>Widodo, R B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1869</volume><issue>1</issue><spage>12092</spage><pages>12092-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1869/1/012092</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12092 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2515168565 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Blood Deep learning Malaria Object recognition Physics Preprocessing |
title | Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20preprocessed%20thin%20blood%20smear%20images%20to%20improve%20malaria%20parasite%20detection%20using%20deep%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Swastika,%20W&rft.date=2021-04-01&rft.volume=1869&rft.issue=1&rft.spage=12092&rft.pages=12092-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1869/1/012092&rft_dat=%3Cproquest_cross%3E2515168565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168565&rft_id=info:pmid/&rfr_iscdi=true |