Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning

Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1869 (1), p.12092
Hauptverfasser: Swastika, W, Kristianti, G M, Widodo, R B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12092
container_title Journal of physics. Conference series
container_volume 1869
creator Swastika, W
Kristianti, G M
Widodo, R B
description Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.
doi_str_mv 10.1088/1742-6596/1869/1/012092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515168565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515168565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</originalsourceid><addsrcrecordid>eNo9kFtLwzAUgIMoOKe_wYDPtbk0t0cZ0wkDX_Q5pO3J1tE1NekE_70pk-Ul55Av5_Ih9EjJMyVal1RVrJDCyJJqaUpaEsqIYVdocXm5vsRa36K7lA6E8HzUAu3X3kMzdT-AxwhjDA2kBC2e9t2A6z6EFqcjuIi7o9tBwlPIUcYyf3S9i53Do4sudRPgFqa5VBjwKXXDLucw4j5_HnJ2j2686xM8_N9L9PW6_lxtiu3H2_vqZVs0rDKsYFwoX3vqNfdVW9ccdFVzoxU4rWsFAI0ighomKm1YpSkXXOq65SrDSgJfoqdz3Tzk9wnSZA_hFIfc0jJBBZVaSJEpdaaaGFKK4O0Y84bx11JiZ612FmZneXbWaqk9a-V_9btsUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515168565</pqid></control><display><type>article</type><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Swastika, W ; Kristianti, G M ; Widodo, R B</creator><creatorcontrib>Swastika, W ; Kristianti, G M ; Widodo, R B</creatorcontrib><description>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1869/1/012092</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Blood ; Deep learning ; Malaria ; Object recognition ; Physics ; Preprocessing</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12092</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</citedby><cites>FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Swastika, W</creatorcontrib><creatorcontrib>Kristianti, G M</creatorcontrib><creatorcontrib>Widodo, R B</creatorcontrib><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><title>Journal of physics. Conference series</title><description>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</description><subject>Artificial neural networks</subject><subject>Blood</subject><subject>Deep learning</subject><subject>Malaria</subject><subject>Object recognition</subject><subject>Physics</subject><subject>Preprocessing</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kFtLwzAUgIMoOKe_wYDPtbk0t0cZ0wkDX_Q5pO3J1tE1NekE_70pk-Ul55Av5_Ih9EjJMyVal1RVrJDCyJJqaUpaEsqIYVdocXm5vsRa36K7lA6E8HzUAu3X3kMzdT-AxwhjDA2kBC2e9t2A6z6EFqcjuIi7o9tBwlPIUcYyf3S9i53Do4sudRPgFqa5VBjwKXXDLucw4j5_HnJ2j2686xM8_N9L9PW6_lxtiu3H2_vqZVs0rDKsYFwoX3vqNfdVW9ccdFVzoxU4rWsFAI0ighomKm1YpSkXXOq65SrDSgJfoqdz3Tzk9wnSZA_hFIfc0jJBBZVaSJEpdaaaGFKK4O0Y84bx11JiZ612FmZneXbWaqk9a-V_9btsUg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Swastika, W</creator><creator>Kristianti, G M</creator><creator>Widodo, R B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</title><author>Swastika, W ; Kristianti, G M ; Widodo, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2492-2357fbf1f83f4dbb3e84b3987ea88b7eeec7051925489248135368bd37dbb76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Blood</topic><topic>Deep learning</topic><topic>Malaria</topic><topic>Object recognition</topic><topic>Physics</topic><topic>Preprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swastika, W</creatorcontrib><creatorcontrib>Kristianti, G M</creatorcontrib><creatorcontrib>Widodo, R B</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swastika, W</au><au>Kristianti, G M</au><au>Widodo, R B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1869</volume><issue>1</issue><spage>12092</spage><pages>12092-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Malaria can be difficult to detect from thin blood smears. Image recognition methods such as convolutional neural network can be used to detect malaria, but the training process takes a long time. Previous research created a new architecture and compares it to several other architectures such as VGG-16 and ResNet. The effect of preprocessing is analyzed in this research. VGG-16, ResNet, and the custom architecture created by the previous research are being used in this study. The preprocessing methods being analyzed in this research include gray-world normalization and comprehensive normalization. The highest accuracy improvement per epoch (0.5256% using ResNet-50 and 0.0352% using custom architecture) is achieved through gray-world normalization, that also improves final accuracy (90.1% using ResNet-50 and 93.1% using custom architecture) when compared to other methods with the same epochs for ResNet and custom architecture.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1869/1/012092</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-04, Vol.1869 (1), p.12092
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2515168565
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Artificial neural networks
Blood
Deep learning
Malaria
Object recognition
Physics
Preprocessing
title Effective preprocessed thin blood smear images to improve malaria parasite detection using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20preprocessed%20thin%20blood%20smear%20images%20to%20improve%20malaria%20parasite%20detection%20using%20deep%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Swastika,%20W&rft.date=2021-04-01&rft.volume=1869&rft.issue=1&rft.spage=12092&rft.pages=12092-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1869/1/012092&rft_dat=%3Cproquest_cross%3E2515168565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515168565&rft_id=info:pmid/&rfr_iscdi=true