Application of simulated annealing particle swarm optimization in complex three-dimensional path planning
Particle Swarm Optimization (PSO) has achieved good results in UAV path planning, but there is still the phenomenon of abandoning the global optimal path and choosing the local optimal one. In order to improve the ability of particle swarm in path planning, a simulated annealing particle swarm algor...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-04, Vol.1873 (1), p.12077 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12077 |
container_title | Journal of physics. Conference series |
container_volume | 1873 |
creator | Wangsheng, Fang Chong, Wang Ruhua, Zhao |
description | Particle Swarm Optimization (PSO) has achieved good results in UAV path planning, but there is still the phenomenon of abandoning the global optimal path and choosing the local optimal one. In order to improve the ability of particle swarm in path planning, a simulated annealing particle swarm algorithm is proposed. First, tent reverse learning is used to initialize the population so that the algorithm is evenly distributed in space. Then annealing operation is performed after iteration once, which has better local path judgment ability and avoids the phenomenon of local optimum to some extent, so as to find a more satisfactory path. Simulated annealing particle swarms can find a clear and satisfactory path with high stability through the complex three-dimensional path planning simulation of UAV. |
doi_str_mv | 10.1088/1742-6596/1873/1/012077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515165984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515165984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-c1c48348b6092425d607505372374034b0eda0e49047289fe62e60a5bf55d2613</originalsourceid><addsrcrecordid>eNo9kFtLwzAUx4MoOKefwYDPdSe3Jn0cwxsMfNHnkLWpy0jbmHR4-fSmVHZezoH_hcMPoVsC9wSUWhHJaVGKqlwRJdmKrIBQkPIMLU7K-elW6hJdpXQAYHnkArl1CN7VZnRDj4cWJ9cdvRltg03fW-Nd_4GDiaOrvcXpy8QOD2F0nfudI67H9dAFb7_xuI_WFo3rbJ-yZHwOjnscfG7KNdfoojU-2Zv_vUTvjw9vm-di-_r0sllvi5pWUhY1qbliXO1KqCinoilBChBMUiY5ML4D2xiwvAIuqapaW1JbghG7VoiGloQt0d3cG-LwebRp1IfhGPM7SVNBBMlAFM8uObvqOKQUbatDdJ2JP5qAnrjqiZie6OmJqyZ65sr-AC6va9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515165984</pqid></control><display><type>article</type><title>Application of simulated annealing particle swarm optimization in complex three-dimensional path planning</title><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wangsheng, Fang ; Chong, Wang ; Ruhua, Zhao</creator><creatorcontrib>Wangsheng, Fang ; Chong, Wang ; Ruhua, Zhao</creatorcontrib><description>Particle Swarm Optimization (PSO) has achieved good results in UAV path planning, but there is still the phenomenon of abandoning the global optimal path and choosing the local optimal one. In order to improve the ability of particle swarm in path planning, a simulated annealing particle swarm algorithm is proposed. First, tent reverse learning is used to initialize the population so that the algorithm is evenly distributed in space. Then annealing operation is performed after iteration once, which has better local path judgment ability and avoids the phenomenon of local optimum to some extent, so as to find a more satisfactory path. Simulated annealing particle swarms can find a clear and satisfactory path with high stability through the complex three-dimensional path planning simulation of UAV.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1873/1/012077</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Dimensional stability ; Machine learning ; Particle swarm optimization ; Path planning ; Physics ; Simulated annealing ; Simulation ; Unmanned aerial vehicles</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1873 (1), p.12077</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-c1c48348b6092425d607505372374034b0eda0e49047289fe62e60a5bf55d2613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wangsheng, Fang</creatorcontrib><creatorcontrib>Chong, Wang</creatorcontrib><creatorcontrib>Ruhua, Zhao</creatorcontrib><title>Application of simulated annealing particle swarm optimization in complex three-dimensional path planning</title><title>Journal of physics. Conference series</title><description>Particle Swarm Optimization (PSO) has achieved good results in UAV path planning, but there is still the phenomenon of abandoning the global optimal path and choosing the local optimal one. In order to improve the ability of particle swarm in path planning, a simulated annealing particle swarm algorithm is proposed. First, tent reverse learning is used to initialize the population so that the algorithm is evenly distributed in space. Then annealing operation is performed after iteration once, which has better local path judgment ability and avoids the phenomenon of local optimum to some extent, so as to find a more satisfactory path. Simulated annealing particle swarms can find a clear and satisfactory path with high stability through the complex three-dimensional path planning simulation of UAV.</description><subject>Algorithms</subject><subject>Dimensional stability</subject><subject>Machine learning</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Physics</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Unmanned aerial vehicles</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kFtLwzAUx4MoOKefwYDPdSe3Jn0cwxsMfNHnkLWpy0jbmHR4-fSmVHZezoH_hcMPoVsC9wSUWhHJaVGKqlwRJdmKrIBQkPIMLU7K-elW6hJdpXQAYHnkArl1CN7VZnRDj4cWJ9cdvRltg03fW-Nd_4GDiaOrvcXpy8QOD2F0nfudI67H9dAFb7_xuI_WFo3rbJ-yZHwOjnscfG7KNdfoojU-2Zv_vUTvjw9vm-di-_r0sllvi5pWUhY1qbliXO1KqCinoilBChBMUiY5ML4D2xiwvAIuqapaW1JbghG7VoiGloQt0d3cG-LwebRp1IfhGPM7SVNBBMlAFM8uObvqOKQUbatDdJ2JP5qAnrjqiZie6OmJqyZ65sr-AC6va9A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Wangsheng, Fang</creator><creator>Chong, Wang</creator><creator>Ruhua, Zhao</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Application of simulated annealing particle swarm optimization in complex three-dimensional path planning</title><author>Wangsheng, Fang ; Chong, Wang ; Ruhua, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-c1c48348b6092425d607505372374034b0eda0e49047289fe62e60a5bf55d2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Dimensional stability</topic><topic>Machine learning</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Physics</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wangsheng, Fang</creatorcontrib><creatorcontrib>Chong, Wang</creatorcontrib><creatorcontrib>Ruhua, Zhao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wangsheng, Fang</au><au>Chong, Wang</au><au>Ruhua, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of simulated annealing particle swarm optimization in complex three-dimensional path planning</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1873</volume><issue>1</issue><spage>12077</spage><pages>12077-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Particle Swarm Optimization (PSO) has achieved good results in UAV path planning, but there is still the phenomenon of abandoning the global optimal path and choosing the local optimal one. In order to improve the ability of particle swarm in path planning, a simulated annealing particle swarm algorithm is proposed. First, tent reverse learning is used to initialize the population so that the algorithm is evenly distributed in space. Then annealing operation is performed after iteration once, which has better local path judgment ability and avoids the phenomenon of local optimum to some extent, so as to find a more satisfactory path. Simulated annealing particle swarms can find a clear and satisfactory path with high stability through the complex three-dimensional path planning simulation of UAV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1873/1/012077</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-04, Vol.1873 (1), p.12077 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2515165984 |
source | Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Dimensional stability Machine learning Particle swarm optimization Path planning Physics Simulated annealing Simulation Unmanned aerial vehicles |
title | Application of simulated annealing particle swarm optimization in complex three-dimensional path planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20simulated%20annealing%20particle%20swarm%20optimization%20in%20complex%20three-dimensional%20path%20planning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wangsheng,%20Fang&rft.date=2021-04-01&rft.volume=1873&rft.issue=1&rft.spage=12077&rft.pages=12077-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1873/1/012077&rft_dat=%3Cproquest_cross%3E2515165984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515165984&rft_id=info:pmid/&rfr_iscdi=true |