Functional a posteriori error estimates for boundary element methods

Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived err...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2021-04, Vol.147 (4), p.937-966
Hauptverfasser: Kurz, Stefan, Pauly, Dirk, Praetorius, Dirk, Repin, Sergey, Sebastian, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 966
container_issue 4
container_start_page 937
container_title Numerische Mathematik
container_volume 147
creator Kurz, Stefan
Pauly, Dirk
Praetorius, Dirk
Repin, Sergey
Sebastian, Daniel
description Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.
doi_str_mv 10.1007/s00211-021-01188-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515144763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515144763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4DraG5eM1lKtSoU3Ci4C2keOqWd1GRm0b83OoI7N_fFOYdzD0KXQK-B0uamUMoASC2EArQtUUdoRrWQhDMhj-tMmSZS67dTdFbKhlJolIAZuluOvRu61NsttnifyhByl3KHQ84p41CGbmeHUHCs2zqNvbf5gMM27EI_4F0YPpIv5-gk2m0JF799jl6X9y-LR7J6fnha3K6I44oPxEfarh11OkJjdQChuOeOcR2jV20EGUEwq6ViTthQ76Cpd1zKyCXjjedzdDXp7nP6HKs3s0ljrtaLYRIkCNEoXlFsQrmcSskhmn2uT-SDAWq-0zJTWqYW85OWUZXEJ1Kp4P495D_pf1hfrP1s-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515144763</pqid></control><display><type>article</type><title>Functional a posteriori error estimates for boundary element methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</creator><creatorcontrib>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</creatorcontrib><description>Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01188-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary element method ; Collocation methods ; Error analysis ; Estimates ; Finite element method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical ; Upper bounds</subject><ispartof>Numerische Mathematik, 2021-04, Vol.147 (4), p.937-966</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</citedby><cites>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01188-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01188-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kurz, Stefan</creatorcontrib><creatorcontrib>Pauly, Dirk</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Repin, Sergey</creatorcontrib><creatorcontrib>Sebastian, Daniel</creatorcontrib><title>Functional a posteriori error estimates for boundary element methods</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</description><subject>Boundary element method</subject><subject>Collocation methods</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4DraG5eM1lKtSoU3Ci4C2keOqWd1GRm0b83OoI7N_fFOYdzD0KXQK-B0uamUMoASC2EArQtUUdoRrWQhDMhj-tMmSZS67dTdFbKhlJolIAZuluOvRu61NsttnifyhByl3KHQ84p41CGbmeHUHCs2zqNvbf5gMM27EI_4F0YPpIv5-gk2m0JF799jl6X9y-LR7J6fnha3K6I44oPxEfarh11OkJjdQChuOeOcR2jV20EGUEwq6ViTthQ76Cpd1zKyCXjjedzdDXp7nP6HKs3s0ljrtaLYRIkCNEoXlFsQrmcSskhmn2uT-SDAWq-0zJTWqYW85OWUZXEJ1Kp4P495D_pf1hfrP1s-w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kurz, Stefan</creator><creator>Pauly, Dirk</creator><creator>Praetorius, Dirk</creator><creator>Repin, Sergey</creator><creator>Sebastian, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Functional a posteriori error estimates for boundary element methods</title><author>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary element method</topic><topic>Collocation methods</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurz, Stefan</creatorcontrib><creatorcontrib>Pauly, Dirk</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Repin, Sergey</creatorcontrib><creatorcontrib>Sebastian, Daniel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurz, Stefan</au><au>Pauly, Dirk</au><au>Praetorius, Dirk</au><au>Repin, Sergey</au><au>Sebastian, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional a posteriori error estimates for boundary element methods</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>147</volume><issue>4</issue><spage>937</spage><epage>966</epage><pages>937-966</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01188-6</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2021-04, Vol.147 (4), p.937-966
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2515144763
source SpringerLink Journals - AutoHoldings
subjects Boundary element method
Collocation methods
Error analysis
Estimates
Finite element method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
Upper bounds
title Functional a posteriori error estimates for boundary element methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20a%20posteriori%20error%20estimates%20for%20boundary%20element%20methods&rft.jtitle=Numerische%20Mathematik&rft.au=Kurz,%20Stefan&rft.date=2021-04-01&rft.volume=147&rft.issue=4&rft.spage=937&rft.epage=966&rft.pages=937-966&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01188-6&rft_dat=%3Cproquest_cross%3E2515144763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515144763&rft_id=info:pmid/&rfr_iscdi=true