Functional a posteriori error estimates for boundary element methods
Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived err...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2021-04, Vol.147 (4), p.937-966 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 966 |
---|---|
container_issue | 4 |
container_start_page | 937 |
container_title | Numerische Mathematik |
container_volume | 147 |
creator | Kurz, Stefan Pauly, Dirk Praetorius, Dirk Repin, Sergey Sebastian, Daniel |
description | Functional error estimates are well-established tools for
a posteriori
error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results. |
doi_str_mv | 10.1007/s00211-021-01188-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2515144763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515144763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq4DraG5eM1lKtSoU3Ci4C2keOqWd1GRm0b83OoI7N_fFOYdzD0KXQK-B0uamUMoASC2EArQtUUdoRrWQhDMhj-tMmSZS67dTdFbKhlJolIAZuluOvRu61NsttnifyhByl3KHQ84p41CGbmeHUHCs2zqNvbf5gMM27EI_4F0YPpIv5-gk2m0JF799jl6X9y-LR7J6fnha3K6I44oPxEfarh11OkJjdQChuOeOcR2jV20EGUEwq6ViTthQ76Cpd1zKyCXjjedzdDXp7nP6HKs3s0ljrtaLYRIkCNEoXlFsQrmcSskhmn2uT-SDAWq-0zJTWqYW85OWUZXEJ1Kp4P495D_pf1hfrP1s-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515144763</pqid></control><display><type>article</type><title>Functional a posteriori error estimates for boundary element methods</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</creator><creatorcontrib>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</creatorcontrib><description>Functional error estimates are well-established tools for
a posteriori
error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01188-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary element method ; Collocation methods ; Error analysis ; Estimates ; Finite element method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical ; Upper bounds</subject><ispartof>Numerische Mathematik, 2021-04, Vol.147 (4), p.937-966</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</citedby><cites>FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01188-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01188-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kurz, Stefan</creatorcontrib><creatorcontrib>Pauly, Dirk</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Repin, Sergey</creatorcontrib><creatorcontrib>Sebastian, Daniel</creatorcontrib><title>Functional a posteriori error estimates for boundary element methods</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>Functional error estimates are well-established tools for
a posteriori
error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</description><subject>Boundary element method</subject><subject>Collocation methods</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UMtKAzEUDaJgrf6Aq4DraG5eM1lKtSoU3Ci4C2keOqWd1GRm0b83OoI7N_fFOYdzD0KXQK-B0uamUMoASC2EArQtUUdoRrWQhDMhj-tMmSZS67dTdFbKhlJolIAZuluOvRu61NsttnifyhByl3KHQ84p41CGbmeHUHCs2zqNvbf5gMM27EI_4F0YPpIv5-gk2m0JF799jl6X9y-LR7J6fnha3K6I44oPxEfarh11OkJjdQChuOeOcR2jV20EGUEwq6ViTthQ76Cpd1zKyCXjjedzdDXp7nP6HKs3s0ljrtaLYRIkCNEoXlFsQrmcSskhmn2uT-SDAWq-0zJTWqYW85OWUZXEJ1Kp4P495D_pf1hfrP1s-w</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kurz, Stefan</creator><creator>Pauly, Dirk</creator><creator>Praetorius, Dirk</creator><creator>Repin, Sergey</creator><creator>Sebastian, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Functional a posteriori error estimates for boundary element methods</title><author>Kurz, Stefan ; Pauly, Dirk ; Praetorius, Dirk ; Repin, Sergey ; Sebastian, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-df08bc0c9f17a9e1463d3c239ffd68f15f142a9562c4ae239190dc355f35237d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary element method</topic><topic>Collocation methods</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurz, Stefan</creatorcontrib><creatorcontrib>Pauly, Dirk</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Repin, Sergey</creatorcontrib><creatorcontrib>Sebastian, Daniel</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurz, Stefan</au><au>Pauly, Dirk</au><au>Praetorius, Dirk</au><au>Repin, Sergey</au><au>Sebastian, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional a posteriori error estimates for boundary element methods</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>147</volume><issue>4</issue><spage>937</spage><epage>966</epage><pages>937-966</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Functional error estimates are well-established tools for
a posteriori
error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01188-6</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2021-04, Vol.147 (4), p.937-966 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2515144763 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary element method Collocation methods Error analysis Estimates Finite element method Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical Upper bounds |
title | Functional a posteriori error estimates for boundary element methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20a%20posteriori%20error%20estimates%20for%20boundary%20element%20methods&rft.jtitle=Numerische%20Mathematik&rft.au=Kurz,%20Stefan&rft.date=2021-04-01&rft.volume=147&rft.issue=4&rft.spage=937&rft.epage=966&rft.pages=937-966&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01188-6&rft_dat=%3Cproquest_cross%3E2515144763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515144763&rft_id=info:pmid/&rfr_iscdi=true |