Task Space Planning with Complementarity Constraint-based Obstacle Avoidance

In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Sinha, Anirban, Sarker, Anik, Chakraborty, Nilanjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sinha, Anirban
Sarker, Anik
Chakraborty, Nilanjan
description In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2514888818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514888818</sourcerecordid><originalsourceid>FETCH-proquest_journals_25148888183</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_GGgt6IyW25CiRVCQ-3jqq8bGNzYzFv19LvqA7uZwOHfCAiFlEuWpEDMWOtfGcSxWa5FlMmCHEtyDn3uokZ80ECm68bfyd16YrtfYIXmwyn9GJ-ctKPJRBQ4bfqych1oj37yMaoBqXLDpFbTD8Mc5W-62ZbGPemueAzp_ac1gaUwXkSVpPi7J5X-vL2jqPdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514888818</pqid></control><display><type>article</type><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><source>Free E- Journals</source><creator>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</creator><creatorcontrib>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</creatorcontrib><description>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collision avoidance ; Collisions ; End effectors ; Evolution ; Interpolation ; Kinematics ; Model testing ; Obstacle avoidance ; Robots ; Task space</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sinha, Anirban</creatorcontrib><creatorcontrib>Sarker, Anik</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><title>arXiv.org</title><description>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</description><subject>Collision avoidance</subject><subject>Collisions</subject><subject>End effectors</subject><subject>Evolution</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Model testing</subject><subject>Obstacle avoidance</subject><subject>Robots</subject><subject>Task space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAURYcgSMp_GGgt6IyW25CiRVCQ-3jqq8bGNzYzFv19LvqA7uZwOHfCAiFlEuWpEDMWOtfGcSxWa5FlMmCHEtyDn3uokZ80ECm68bfyd16YrtfYIXmwyn9GJ-ctKPJRBQ4bfqych1oj37yMaoBqXLDpFbTD8Mc5W-62ZbGPemueAzp_ac1gaUwXkSVpPi7J5X-vL2jqPdI</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Sinha, Anirban</creator><creator>Sarker, Anik</creator><creator>Chakraborty, Nilanjan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210416</creationdate><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><author>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25148888183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collision avoidance</topic><topic>Collisions</topic><topic>End effectors</topic><topic>Evolution</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Model testing</topic><topic>Obstacle avoidance</topic><topic>Robots</topic><topic>Task space</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Anirban</creatorcontrib><creatorcontrib>Sarker, Anik</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Anirban</au><au>Sarker, Anik</au><au>Chakraborty, Nilanjan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</atitle><jtitle>arXiv.org</jtitle><date>2021-04-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2514888818
source Free E- Journals
subjects Collision avoidance
Collisions
End effectors
Evolution
Interpolation
Kinematics
Model testing
Obstacle avoidance
Robots
Task space
title Task Space Planning with Complementarity Constraint-based Obstacle Avoidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Task%20Space%20Planning%20with%20Complementarity%20Constraint-based%20Obstacle%20Avoidance&rft.jtitle=arXiv.org&rft.au=Sinha,%20Anirban&rft.date=2021-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2514888818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514888818&rft_id=info:pmid/&rfr_iscdi=true