Task Space Planning with Complementarity Constraint-based Obstacle Avoidance
In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sinha, Anirban Sarker, Anik Chakraborty, Nilanjan |
description | In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2514888818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514888818</sourcerecordid><originalsourceid>FETCH-proquest_journals_25148888183</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_GGgt6IyW25CiRVCQ-3jqq8bGNzYzFv19LvqA7uZwOHfCAiFlEuWpEDMWOtfGcSxWa5FlMmCHEtyDn3uokZ80ECm68bfyd16YrtfYIXmwyn9GJ-ctKPJRBQ4bfqych1oj37yMaoBqXLDpFbTD8Mc5W-62ZbGPemueAzp_ac1gaUwXkSVpPi7J5X-vL2jqPdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514888818</pqid></control><display><type>article</type><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><source>Free E- Journals</source><creator>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</creator><creatorcontrib>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</creatorcontrib><description>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collision avoidance ; Collisions ; End effectors ; Evolution ; Interpolation ; Kinematics ; Model testing ; Obstacle avoidance ; Robots ; Task space</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sinha, Anirban</creatorcontrib><creatorcontrib>Sarker, Anik</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><title>arXiv.org</title><description>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</description><subject>Collision avoidance</subject><subject>Collisions</subject><subject>End effectors</subject><subject>Evolution</subject><subject>Interpolation</subject><subject>Kinematics</subject><subject>Model testing</subject><subject>Obstacle avoidance</subject><subject>Robots</subject><subject>Task space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAURYcgSMp_GGgt6IyW25CiRVCQ-3jqq8bGNzYzFv19LvqA7uZwOHfCAiFlEuWpEDMWOtfGcSxWa5FlMmCHEtyDn3uokZ80ECm68bfyd16YrtfYIXmwyn9GJ-ctKPJRBQ4bfqych1oj37yMaoBqXLDpFbTD8Mc5W-62ZbGPemueAzp_ac1gaUwXkSVpPi7J5X-vL2jqPdI</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Sinha, Anirban</creator><creator>Sarker, Anik</creator><creator>Chakraborty, Nilanjan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210416</creationdate><title>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</title><author>Sinha, Anirban ; Sarker, Anik ; Chakraborty, Nilanjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25148888183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Collision avoidance</topic><topic>Collisions</topic><topic>End effectors</topic><topic>Evolution</topic><topic>Interpolation</topic><topic>Kinematics</topic><topic>Model testing</topic><topic>Obstacle avoidance</topic><topic>Robots</topic><topic>Task space</topic><toplevel>online_resources</toplevel><creatorcontrib>Sinha, Anirban</creatorcontrib><creatorcontrib>Sarker, Anik</creatorcontrib><creatorcontrib>Chakraborty, Nilanjan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha, Anirban</au><au>Sarker, Anik</au><au>Chakraborty, Nilanjan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Task Space Planning with Complementarity Constraint-based Obstacle Avoidance</atitle><jtitle>arXiv.org</jtitle><date>2021-04-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2514888818 |
source | Free E- Journals |
subjects | Collision avoidance Collisions End effectors Evolution Interpolation Kinematics Model testing Obstacle avoidance Robots Task space |
title | Task Space Planning with Complementarity Constraint-based Obstacle Avoidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Task%20Space%20Planning%20with%20Complementarity%20Constraint-based%20Obstacle%20Avoidance&rft.jtitle=arXiv.org&rft.au=Sinha,%20Anirban&rft.date=2021-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2514888818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514888818&rft_id=info:pmid/&rfr_iscdi=true |