Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing

Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2021, Vol.2021, p.1-11
Hauptverfasser: Yuan, Youwei, Qian, Lu, Jia, Gangyong, Yu, Longxuan, Yu, Zixuan, Zhao, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2021
creator Yuan, Youwei
Qian, Lu
Jia, Gangyong
Yu, Longxuan
Yu, Zixuan
Zhao, Qi
description Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers were limited. User task randomness and network inhomogeneity brought considerable challenges to limited-resource MEC systems. To solve these problems, the presented paper proposed a blocking- and delay-aware schedule strategy for MEC environment service workflow offloading. First, the workflow was modeled in mobile applications and the buffer queue in servers. Then, the server collaboration area was divided through a collaboration area division method based on clustering. Finally, an improved particle swarm optimization scheduling method was utilized to solve this NP-hard problem. Many simulation results verified the effectiveness of the proposed scheme. This method was superior to existing methods, which effectively reduces the blocking probability and execution delay and ensures the quality of the experience of the user.
doi_str_mv 10.1155/2021/5578465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2514161036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514161036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c135a9de6d33027643bef71c02384bfe5a684bec1820500ae4937bbe7fb69063</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4wEscYTQdRzbybGqyo9U1AOV6C1ynHVxSePgpFS8PSktV06z2v12RhpCrhncMybEKIaYjYRQaSLFCRmwVIkoA7E87WehkgiYWp6Ti7ZdA0jgQg0ITq11xmHd0YnfNNtOd87XdG5t5XXp6hW1PtBXDF_OIH3z4aM_7Ki39MUXrkI6bprKmd-vlrr6bz0tV3h07E0uyZnVVYtXRx2SxcN0MXmKZvPH58l4FhnOVRcZxoXOSpQl5xArmfACrWIGYp4mhUWhZa9oWBqDANCYZFwVBSpbyAwkH5Kbg20T_OcW2y5f-22o-8Q8FixhkgHfU3cHygTftgFt3gS30eE7Z5Dve8z3PebHHnv89oC_u7rUO_c__QNnlnJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514161036</pqid></control><display><type>article</type><title>Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yuan, Youwei ; Qian, Lu ; Jia, Gangyong ; Yu, Longxuan ; Yu, Zixuan ; Zhao, Qi</creator><contributor>Yang, Xiaoxian</contributor><creatorcontrib>Yuan, Youwei ; Qian, Lu ; Jia, Gangyong ; Yu, Longxuan ; Yu, Zixuan ; Zhao, Qi ; Yang, Xiaoxian</creatorcontrib><description>Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers were limited. User task randomness and network inhomogeneity brought considerable challenges to limited-resource MEC systems. To solve these problems, the presented paper proposed a blocking- and delay-aware schedule strategy for MEC environment service workflow offloading. First, the workflow was modeled in mobile applications and the buffer queue in servers. Then, the server collaboration area was divided through a collaboration area division method based on clustering. Finally, an improved particle swarm optimization scheduling method was utilized to solve this NP-hard problem. Many simulation results verified the effectiveness of the proposed scheme. This method was superior to existing methods, which effectively reduces the blocking probability and execution delay and ensures the quality of the experience of the user.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2021/5578465</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Applications programs ; Cloud computing ; Clustering ; Collaboration ; Computation offloading ; Cooperation ; Edge computing ; Inhomogeneity ; Internet of Things ; Load ; Mobile computing ; Optimization algorithms ; Particle swarm optimization ; Schedules ; Scheduling ; Servers ; User behavior ; User experience ; Workflow ; Workloads</subject><ispartof>Mobile information systems, 2021, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Youwei Yuan et al.</rights><rights>Copyright © 2021 Youwei Yuan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c135a9de6d33027643bef71c02384bfe5a684bec1820500ae4937bbe7fb69063</citedby><cites>FETCH-LOGICAL-c337t-c135a9de6d33027643bef71c02384bfe5a684bec1820500ae4937bbe7fb69063</cites><orcidid>0000-0002-5337-9822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Yang, Xiaoxian</contributor><creatorcontrib>Yuan, Youwei</creatorcontrib><creatorcontrib>Qian, Lu</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><creatorcontrib>Yu, Longxuan</creatorcontrib><creatorcontrib>Yu, Zixuan</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><title>Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing</title><title>Mobile information systems</title><description>Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers were limited. User task randomness and network inhomogeneity brought considerable challenges to limited-resource MEC systems. To solve these problems, the presented paper proposed a blocking- and delay-aware schedule strategy for MEC environment service workflow offloading. First, the workflow was modeled in mobile applications and the buffer queue in servers. Then, the server collaboration area was divided through a collaboration area division method based on clustering. Finally, an improved particle swarm optimization scheduling method was utilized to solve this NP-hard problem. Many simulation results verified the effectiveness of the proposed scheme. This method was superior to existing methods, which effectively reduces the blocking probability and execution delay and ensures the quality of the experience of the user.</description><subject>Applications programs</subject><subject>Cloud computing</subject><subject>Clustering</subject><subject>Collaboration</subject><subject>Computation offloading</subject><subject>Cooperation</subject><subject>Edge computing</subject><subject>Inhomogeneity</subject><subject>Internet of Things</subject><subject>Load</subject><subject>Mobile computing</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Servers</subject><subject>User behavior</subject><subject>User experience</subject><subject>Workflow</subject><subject>Workloads</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kM1OwzAQhC0EEqVw4wEscYTQdRzbybGqyo9U1AOV6C1ynHVxSePgpFS8PSktV06z2v12RhpCrhncMybEKIaYjYRQaSLFCRmwVIkoA7E87WehkgiYWp6Ti7ZdA0jgQg0ITq11xmHd0YnfNNtOd87XdG5t5XXp6hW1PtBXDF_OIH3z4aM_7Ki39MUXrkI6bprKmd-vlrr6bz0tV3h07E0uyZnVVYtXRx2SxcN0MXmKZvPH58l4FhnOVRcZxoXOSpQl5xArmfACrWIGYp4mhUWhZa9oWBqDANCYZFwVBSpbyAwkH5Kbg20T_OcW2y5f-22o-8Q8FixhkgHfU3cHygTftgFt3gS30eE7Z5Dve8z3PebHHnv89oC_u7rUO_c__QNnlnJ8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yuan, Youwei</creator><creator>Qian, Lu</creator><creator>Jia, Gangyong</creator><creator>Yu, Longxuan</creator><creator>Yu, Zixuan</creator><creator>Zhao, Qi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5337-9822</orcidid></search><sort><creationdate>2021</creationdate><title>Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing</title><author>Yuan, Youwei ; Qian, Lu ; Jia, Gangyong ; Yu, Longxuan ; Yu, Zixuan ; Zhao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c135a9de6d33027643bef71c02384bfe5a684bec1820500ae4937bbe7fb69063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications programs</topic><topic>Cloud computing</topic><topic>Clustering</topic><topic>Collaboration</topic><topic>Computation offloading</topic><topic>Cooperation</topic><topic>Edge computing</topic><topic>Inhomogeneity</topic><topic>Internet of Things</topic><topic>Load</topic><topic>Mobile computing</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Servers</topic><topic>User behavior</topic><topic>User experience</topic><topic>Workflow</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Youwei</creatorcontrib><creatorcontrib>Qian, Lu</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><creatorcontrib>Yu, Longxuan</creatorcontrib><creatorcontrib>Yu, Zixuan</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Youwei</au><au>Qian, Lu</au><au>Jia, Gangyong</au><au>Yu, Longxuan</au><au>Yu, Zixuan</au><au>Zhao, Qi</au><au>Yang, Xiaoxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing</atitle><jtitle>Mobile information systems</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers were limited. User task randomness and network inhomogeneity brought considerable challenges to limited-resource MEC systems. To solve these problems, the presented paper proposed a blocking- and delay-aware schedule strategy for MEC environment service workflow offloading. First, the workflow was modeled in mobile applications and the buffer queue in servers. Then, the server collaboration area was divided through a collaboration area division method based on clustering. Finally, an improved particle swarm optimization scheduling method was utilized to solve this NP-hard problem. Many simulation results verified the effectiveness of the proposed scheme. This method was superior to existing methods, which effectively reduces the blocking probability and execution delay and ensures the quality of the experience of the user.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2021/5578465</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5337-9822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2021, Vol.2021, p.1-11
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2514161036
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Applications programs
Cloud computing
Clustering
Collaboration
Computation offloading
Cooperation
Edge computing
Inhomogeneity
Internet of Things
Load
Mobile computing
Optimization algorithms
Particle swarm optimization
Schedules
Scheduling
Servers
User behavior
User experience
Workflow
Workloads
title Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Computation%20Offloading%20for%20Service%20Workflow%20of%20Mobile%20Applications%20in%20Mobile%20Edge%20Computing&rft.jtitle=Mobile%20information%20systems&rft.au=Yuan,%20Youwei&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2021/5578465&rft_dat=%3Cproquest_cross%3E2514161036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514161036&rft_id=info:pmid/&rfr_iscdi=true