Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles

Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2021-05, Vol.144 (4), p.1613-1622
Hauptverfasser: Maleki, Akbar, Haghighi, Arman, Irandoost Shahrestani, Misagh, Abdelmalek, Zahra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 4
container_start_page 1613
container_title Journal of thermal analysis and calorimetry
container_volume 144
creator Maleki, Akbar
Haghighi, Arman
Irandoost Shahrestani, Misagh
Abdelmalek, Zahra
description Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models have good agreement with the values obtained in experimental studies. The values of R 2 in the optimum conditions of using GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods are approximately 0.000010, 0.000032 and 0.0000078, respectively.
doi_str_mv 10.1007/s10973-020-09541-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2514013112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658879783</galeid><sourcerecordid>A658879783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-9c538aefcc82710bd88f51e7a2272d20857c0ab10e7eabac4eef0498dfade903</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhqOqlaC0L8ApUk89BMZOsraPK1QKEhIScLe89nhrmrVT24HdY9-8DqmEuCAfZuT5vxmP_6o6JXBGANh5IiBY2wCFBkTfkWb_oTomPecNFXT1seRtyVekh6Pqc0qPACAEkOPq73och4Pz29o4azGiz3U-jJjqYGsVs7NOOzXUHqf4EvJziL9rG2K9CwaHmcy_MO5KUQdvJp3dk8uHGffKBztMzqS5lJXzszq5wWlVj3NzPWD6Un2yakj49X88qR4ufzxcXDU3tz-vL9Y3je5Enxuh-5YrtFpzyghsDOe2J8gUpYwaCrxnGtSGADJUG6U7RAud4MYqgwLak-rb0naM4c-EKcvHMEVfJkrakw5ISwgtqrNFtVUDSudtyFHpcgzuXFkCrSv361X5WSYYbwvw_Q0wL4r7vFVTSvL6_u6tli5aHUNKEa0co9upeJAE5GyjXGyUxUb5YqPcF6hdoFTEfovx9d3vUP8AaFmj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514013112</pqid></control><display><type>article</type><title>Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles</title><source>SpringerLink Journals</source><creator>Maleki, Akbar ; Haghighi, Arman ; Irandoost Shahrestani, Misagh ; Abdelmalek, Zahra</creator><creatorcontrib>Maleki, Akbar ; Haghighi, Arman ; Irandoost Shahrestani, Misagh ; Abdelmalek, Zahra</creatorcontrib><description>Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models have good agreement with the values obtained in experimental studies. The values of R 2 in the optimum conditions of using GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods are approximately 0.000010, 0.000032 and 0.0000078, respectively.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-09541-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Analytical Chemistry ; Approximation ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Computational fluid dynamics ; Ethylene glycol ; Glycerin ; Glycerol ; Group method of data handling ; Heat conductivity ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Model testing ; Multilayer perceptrons ; Nanofluids ; Nanoparticles ; Neural networks ; Physical Chemistry ; Polymer Sciences ; Silica ; Silicon dioxide ; Thermal conductivity</subject><ispartof>Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1613-1622</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-9c538aefcc82710bd88f51e7a2272d20857c0ab10e7eabac4eef0498dfade903</citedby><cites>FETCH-LOGICAL-c495t-9c538aefcc82710bd88f51e7a2272d20857c0ab10e7eabac4eef0498dfade903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-09541-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-09541-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Maleki, Akbar</creatorcontrib><creatorcontrib>Haghighi, Arman</creatorcontrib><creatorcontrib>Irandoost Shahrestani, Misagh</creatorcontrib><creatorcontrib>Abdelmalek, Zahra</creatorcontrib><title>Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models have good agreement with the values obtained in experimental studies. The values of R 2 in the optimum conditions of using GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods are approximately 0.000010, 0.000032 and 0.0000078, respectively.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational fluid dynamics</subject><subject>Ethylene glycol</subject><subject>Glycerin</subject><subject>Glycerol</subject><subject>Group method of data handling</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Model testing</subject><subject>Multilayer perceptrons</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Thermal conductivity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAQhqOqlaC0L8ApUk89BMZOsraPK1QKEhIScLe89nhrmrVT24HdY9-8DqmEuCAfZuT5vxmP_6o6JXBGANh5IiBY2wCFBkTfkWb_oTomPecNFXT1seRtyVekh6Pqc0qPACAEkOPq73och4Pz29o4azGiz3U-jJjqYGsVs7NOOzXUHqf4EvJziL9rG2K9CwaHmcy_MO5KUQdvJp3dk8uHGffKBztMzqS5lJXzszq5wWlVj3NzPWD6Un2yakj49X88qR4ufzxcXDU3tz-vL9Y3je5Enxuh-5YrtFpzyghsDOe2J8gUpYwaCrxnGtSGADJUG6U7RAud4MYqgwLak-rb0naM4c-EKcvHMEVfJkrakw5ISwgtqrNFtVUDSudtyFHpcgzuXFkCrSv361X5WSYYbwvw_Q0wL4r7vFVTSvL6_u6tli5aHUNKEa0co9upeJAE5GyjXGyUxUb5YqPcF6hdoFTEfovx9d3vUP8AaFmj9A</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Maleki, Akbar</creator><creator>Haghighi, Arman</creator><creator>Irandoost Shahrestani, Misagh</creator><creator>Abdelmalek, Zahra</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210501</creationdate><title>Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles</title><author>Maleki, Akbar ; Haghighi, Arman ; Irandoost Shahrestani, Misagh ; Abdelmalek, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-9c538aefcc82710bd88f51e7a2272d20857c0ab10e7eabac4eef0498dfade903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational fluid dynamics</topic><topic>Ethylene glycol</topic><topic>Glycerin</topic><topic>Glycerol</topic><topic>Group method of data handling</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Model testing</topic><topic>Multilayer perceptrons</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maleki, Akbar</creatorcontrib><creatorcontrib>Haghighi, Arman</creatorcontrib><creatorcontrib>Irandoost Shahrestani, Misagh</creatorcontrib><creatorcontrib>Abdelmalek, Zahra</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maleki, Akbar</au><au>Haghighi, Arman</au><au>Irandoost Shahrestani, Misagh</au><au>Abdelmalek, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>144</volume><issue>4</issue><spage>1613</spage><epage>1622</epage><pages>1613-1622</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models have good agreement with the values obtained in experimental studies. The values of R 2 in the optimum conditions of using GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods are approximately 0.000010, 0.000032 and 0.0000078, respectively.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-09541-x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2021-05, Vol.144 (4), p.1613-1622
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2514013112
source SpringerLink Journals
subjects Algorithms
Analysis
Analytical Chemistry
Approximation
Artificial neural networks
Chemistry
Chemistry and Materials Science
Computational fluid dynamics
Ethylene glycol
Glycerin
Glycerol
Group method of data handling
Heat conductivity
Heat transfer
Inorganic Chemistry
Measurement Science and Instrumentation
Model testing
Multilayer perceptrons
Nanofluids
Nanoparticles
Neural networks
Physical Chemistry
Polymer Sciences
Silica
Silicon dioxide
Thermal conductivity
title Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20different%20types%20of%20artificial%20neural%20network%20for%20modeling%20thermal%20conductivity%20of%20nanofluids%20containing%20silica%20particles&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Maleki,%20Akbar&rft.date=2021-05-01&rft.volume=144&rft.issue=4&rft.spage=1613&rft.epage=1622&rft.pages=1613-1622&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-09541-x&rft_dat=%3Cgale_proqu%3EA658879783%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514013112&rft_id=info:pmid/&rft_galeid=A658879783&rfr_iscdi=true