Canonical Models on Strongly Convex Domains via the Squeezing Function

We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-05, Vol.31 (5), p.4661-4702
Hauptverfasser: Altavilla, Amedeo, Arosio, Leandro, Guerini, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4702
container_issue 5
container_start_page 4661
container_title The Journal of Geometric Analysis
container_volume 31
creator Altavilla, Amedeo
Arosio, Leandro
Guerini, Lorenzo
description We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map f : Ω → Ω with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of f via the squeezing function.
doi_str_mv 10.1007/s12220-020-00448-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2514012533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340209</galeid><sourcerecordid>A707340209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bDabY1mtChUPVfAW0mx2TdkmNdkW6683ywreZBgmGd4nmXkBuMZohhHitxETQlCGhkR5XmbsBEwwYyJdyftpOiOGskKQ4hxcxLhJooLmfAIWlXLeWa06-Oxr00XoHVz1wbu2O8LKu4P5gnd-q6yL8GAV7D8MXH3ujfm2roWLvdO99e4SnDWqi-bqt07B2-L-tXrMli8PT9V8mWnKyj7TRCOWC81wjUQtGoEbsq7rshS4NFRzThvMSp42yOuCFESgdZ0X3BihDMFc0ym4Gd_dBZ-GiL3c-H1w6UtJGM4RJozSpJqNqlZ1RlrX-D4onaI2W6u9M41N_TlHnObJMpEAMgI6-BiDaeQu2K0KR4mRHAyWo8ESDTkYLFmC6AjFJHatCX-z_EP9ADMwfCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514012533</pqid></control><display><type>article</type><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><source>Springer Nature - Complete Springer Journals</source><creator>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</creator><creatorcontrib>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</creatorcontrib><description>We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map f : Ω → Ω with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of f via the squeezing function.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00448-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Automorphisms ; Compressing ; Convex and Discrete Geometry ; Differential Geometry ; Domains ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Rescaling ; Smooth boundaries</subject><ispartof>The Journal of Geometric Analysis, 2021-05, Vol.31 (5), p.4661-4702</ispartof><rights>Mathematica Josephina, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</citedby><cites>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</cites><orcidid>0000-0003-2904-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-020-00448-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-020-00448-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Altavilla, Amedeo</creatorcontrib><creatorcontrib>Arosio, Leandro</creatorcontrib><creatorcontrib>Guerini, Lorenzo</creatorcontrib><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map f : Ω → Ω with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of f via the squeezing function.</description><subject>Abstract Harmonic Analysis</subject><subject>Automorphisms</subject><subject>Compressing</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Domains</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rescaling</subject><subject>Smooth boundaries</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bDabY1mtChUPVfAW0mx2TdkmNdkW6683ywreZBgmGd4nmXkBuMZohhHitxETQlCGhkR5XmbsBEwwYyJdyftpOiOGskKQ4hxcxLhJooLmfAIWlXLeWa06-Oxr00XoHVz1wbu2O8LKu4P5gnd-q6yL8GAV7D8MXH3ujfm2roWLvdO99e4SnDWqi-bqt07B2-L-tXrMli8PT9V8mWnKyj7TRCOWC81wjUQtGoEbsq7rshS4NFRzThvMSp42yOuCFESgdZ0X3BihDMFc0ym4Gd_dBZ-GiL3c-H1w6UtJGM4RJozSpJqNqlZ1RlrX-D4onaI2W6u9M41N_TlHnObJMpEAMgI6-BiDaeQu2K0KR4mRHAyWo8ESDTkYLFmC6AjFJHatCX-z_EP9ADMwfCo</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Altavilla, Amedeo</creator><creator>Arosio, Leandro</creator><creator>Guerini, Lorenzo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-2904-4472</orcidid></search><sort><creationdate>20210501</creationdate><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><author>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Automorphisms</topic><topic>Compressing</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Domains</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rescaling</topic><topic>Smooth boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altavilla, Amedeo</creatorcontrib><creatorcontrib>Arosio, Leandro</creatorcontrib><creatorcontrib>Guerini, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altavilla, Amedeo</au><au>Arosio, Leandro</au><au>Guerini, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Models on Strongly Convex Domains via the Squeezing Function</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>4661</spage><epage>4702</epage><pages>4661-4702</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map f : Ω → Ω with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of f via the squeezing function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00448-5</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-2904-4472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021-05, Vol.31 (5), p.4661-4702
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2514012533
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Automorphisms
Compressing
Convex and Discrete Geometry
Differential Geometry
Domains
Dynamical Systems and Ergodic Theory
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Mathematical analysis
Mathematics
Mathematics and Statistics
Rescaling
Smooth boundaries
title Canonical Models on Strongly Convex Domains via the Squeezing Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Models%20on%20Strongly%20Convex%20Domains%20via%20the%20Squeezing%20Function&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Altavilla,%20Amedeo&rft.date=2021-05-01&rft.volume=31&rft.issue=5&rft.spage=4661&rft.epage=4702&rft.pages=4661-4702&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00448-5&rft_dat=%3Cgale_proqu%3EA707340209%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514012533&rft_id=info:pmid/&rft_galeid=A707340209&rfr_iscdi=true