Canonical Models on Strongly Convex Domains via the Squeezing Function
We prove that if a holomorphic self-map f : Ω → Ω of a bounded strongly convex domain Ω ⊂ C q with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball B k . We also obtain the dual result for a holomorphic self-map...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-05, Vol.31 (5), p.4661-4702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4702 |
---|---|
container_issue | 5 |
container_start_page | 4661 |
container_title | The Journal of Geometric Analysis |
container_volume | 31 |
creator | Altavilla, Amedeo Arosio, Leandro Guerini, Lorenzo |
description | We prove that if a holomorphic self-map
f
:
Ω
→
Ω
of a bounded strongly convex domain
Ω
⊂
C
q
with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball
B
k
. We also obtain the dual result for a holomorphic self-map
f
:
Ω
→
Ω
with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of
f
via the squeezing function. |
doi_str_mv | 10.1007/s12220-020-00448-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2514012533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340209</galeid><sourcerecordid>A707340209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bDabY1mtChUPVfAW0mx2TdkmNdkW6683ywreZBgmGd4nmXkBuMZohhHitxETQlCGhkR5XmbsBEwwYyJdyftpOiOGskKQ4hxcxLhJooLmfAIWlXLeWa06-Oxr00XoHVz1wbu2O8LKu4P5gnd-q6yL8GAV7D8MXH3ujfm2roWLvdO99e4SnDWqi-bqt07B2-L-tXrMli8PT9V8mWnKyj7TRCOWC81wjUQtGoEbsq7rshS4NFRzThvMSp42yOuCFESgdZ0X3BihDMFc0ym4Gd_dBZ-GiL3c-H1w6UtJGM4RJozSpJqNqlZ1RlrX-D4onaI2W6u9M41N_TlHnObJMpEAMgI6-BiDaeQu2K0KR4mRHAyWo8ESDTkYLFmC6AjFJHatCX-z_EP9ADMwfCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514012533</pqid></control><display><type>article</type><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><source>Springer Nature - Complete Springer Journals</source><creator>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</creator><creatorcontrib>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</creatorcontrib><description>We prove that if a holomorphic self-map
f
:
Ω
→
Ω
of a bounded strongly convex domain
Ω
⊂
C
q
with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball
B
k
. We also obtain the dual result for a holomorphic self-map
f
:
Ω
→
Ω
with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of
f
via the squeezing function.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-020-00448-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Automorphisms ; Compressing ; Convex and Discrete Geometry ; Differential Geometry ; Domains ; Dynamical Systems and Ergodic Theory ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Rescaling ; Smooth boundaries</subject><ispartof>The Journal of Geometric Analysis, 2021-05, Vol.31 (5), p.4661-4702</ispartof><rights>Mathematica Josephina, Inc. 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</citedby><cites>FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</cites><orcidid>0000-0003-2904-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-020-00448-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-020-00448-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Altavilla, Amedeo</creatorcontrib><creatorcontrib>Arosio, Leandro</creatorcontrib><creatorcontrib>Guerini, Lorenzo</creatorcontrib><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We prove that if a holomorphic self-map
f
:
Ω
→
Ω
of a bounded strongly convex domain
Ω
⊂
C
q
with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball
B
k
. We also obtain the dual result for a holomorphic self-map
f
:
Ω
→
Ω
with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of
f
via the squeezing function.</description><subject>Abstract Harmonic Analysis</subject><subject>Automorphisms</subject><subject>Compressing</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Domains</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rescaling</subject><subject>Smooth boundaries</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89Z8bDabY1mtChUPVfAW0mx2TdkmNdkW6683ywreZBgmGd4nmXkBuMZohhHitxETQlCGhkR5XmbsBEwwYyJdyftpOiOGskKQ4hxcxLhJooLmfAIWlXLeWa06-Oxr00XoHVz1wbu2O8LKu4P5gnd-q6yL8GAV7D8MXH3ujfm2roWLvdO99e4SnDWqi-bqt07B2-L-tXrMli8PT9V8mWnKyj7TRCOWC81wjUQtGoEbsq7rshS4NFRzThvMSp42yOuCFESgdZ0X3BihDMFc0ym4Gd_dBZ-GiL3c-H1w6UtJGM4RJozSpJqNqlZ1RlrX-D4onaI2W6u9M41N_TlHnObJMpEAMgI6-BiDaeQu2K0KR4mRHAyWo8ESDTkYLFmC6AjFJHatCX-z_EP9ADMwfCo</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Altavilla, Amedeo</creator><creator>Arosio, Leandro</creator><creator>Guerini, Lorenzo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0003-2904-4472</orcidid></search><sort><creationdate>20210501</creationdate><title>Canonical Models on Strongly Convex Domains via the Squeezing Function</title><author>Altavilla, Amedeo ; Arosio, Leandro ; Guerini, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c2c0549c51d09d9f91f2bdd88918e3c773f15870444d626290bd467ee9ae217c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Automorphisms</topic><topic>Compressing</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Domains</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rescaling</topic><topic>Smooth boundaries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altavilla, Amedeo</creatorcontrib><creatorcontrib>Arosio, Leandro</creatorcontrib><creatorcontrib>Guerini, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altavilla, Amedeo</au><au>Arosio, Leandro</au><au>Guerini, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Models on Strongly Convex Domains via the Squeezing Function</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>4661</spage><epage>4702</epage><pages>4661-4702</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We prove that if a holomorphic self-map
f
:
Ω
→
Ω
of a bounded strongly convex domain
Ω
⊂
C
q
with smooth boundary is hyperbolic then it admits a natural semi-conjugacy with a hyperbolic automorphism of a possibly lower dimensional ball
B
k
. We also obtain the dual result for a holomorphic self-map
f
:
Ω
→
Ω
with a boundary repelling fixed point. Both results are obtained by rescaling the dynamics of
f
via the squeezing function.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-020-00448-5</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0003-2904-4472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-6926 |
ispartof | The Journal of Geometric Analysis, 2021-05, Vol.31 (5), p.4661-4702 |
issn | 1050-6926 1559-002X |
language | eng |
recordid | cdi_proquest_journals_2514012533 |
source | Springer Nature - Complete Springer Journals |
subjects | Abstract Harmonic Analysis Automorphisms Compressing Convex and Discrete Geometry Differential Geometry Domains Dynamical Systems and Ergodic Theory Fourier Analysis Geometry Global Analysis and Analysis on Manifolds Mathematical analysis Mathematics Mathematics and Statistics Rescaling Smooth boundaries |
title | Canonical Models on Strongly Convex Domains via the Squeezing Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Models%20on%20Strongly%20Convex%20Domains%20via%20the%20Squeezing%20Function&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Altavilla,%20Amedeo&rft.date=2021-05-01&rft.volume=31&rft.issue=5&rft.spage=4661&rft.epage=4702&rft.pages=4661-4702&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-020-00448-5&rft_dat=%3Cgale_proqu%3EA707340209%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514012533&rft_id=info:pmid/&rft_galeid=A707340209&rfr_iscdi=true |