Topology optimization of thin-walled cross section using moving morphable components approach
Thin-walled beams are extensively applied in the engineering structures, in which the conceptual design of cross-sectional shape and topology is the most important issue. Traditional topology optimization methods cannot easily obtain the thin-walled features. Therefore, a thin-walled cross-sectional...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2021-05, Vol.63 (5), p.2159-2176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2176 |
---|---|
container_issue | 5 |
container_start_page | 2159 |
container_title | Structural and multidisciplinary optimization |
container_volume | 63 |
creator | Guo, Guikai Zhao, Yanfang Su, Weihe Zuo, Wenjie |
description | Thin-walled beams are extensively applied in the engineering structures, in which the conceptual design of cross-sectional shape and topology is the most important issue. Traditional topology optimization methods cannot easily obtain the thin-walled features. Therefore, a thin-walled cross-sectional design method using the moving morphable components (MMC) approach is proposed in this paper. To acquire a thin-walled structure with a high stiffness-to-mass ratio, the cross-sectional area is defined as the objective function, and the cross-sectional bending and torsional moments of inertia are selected as constraints. The bending and torsional moments of inertia in arbitrary domain are both solved by using the finite element method. In addition, the sensitivities of cross-sectional area, bending moments of inertia, and torsional moment of inertia with respect to geometrical parameters of components are derived in the MMC framework, respectively. To demonstrate the effectiveness and accuracy of this method, numerical examples are given to consider the torsional, the bending, and the combined conditions, respectively. By post-process, the obtained thin-walled features can be further transformed into stamping sheets. |
doi_str_mv | 10.1007/s00158-020-02792-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513720957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513720957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-33dc68440e8aea8f67bbc58075ca6562549a214768a2802ed41c0b33d5ed4dd93</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8Rydp06RHWfyCBS8KXiSkabrbpW1i0lXWX2_cit48DPNg3nsz8xA6p3BJAcRVBKBcEmCQSpSMwAGa0YJyQnMpD3-xeDlGJzFuAEBCXs7Q65PzrnOrHXZ-bPv2U4-tG7Br8LhuB_Khu87W2AQXI47W7Ifb2A4r3Lv3qQW_1lVnsXG9d4Mdxoi198Fpsz5FR43uoj376XP0fHvztLgny8e7h8X1kpiMliPJstoUMs_BSm21bApRVYZLENzogheM56Vm6fhCaiaB2TqnBqqk4gnWdZnN0cXkm9a-bW0c1cZtw5BWKsZpJhiUXCQWm1j7d4JtlA9tr8NOUVDfMaopRpViVPsYFSRRNoliIg8rG_6s_1F9AY-Odus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513720957</pqid></control><display><type>article</type><title>Topology optimization of thin-walled cross section using moving morphable components approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Guikai ; Zhao, Yanfang ; Su, Weihe ; Zuo, Wenjie</creator><creatorcontrib>Guo, Guikai ; Zhao, Yanfang ; Su, Weihe ; Zuo, Wenjie</creatorcontrib><description>Thin-walled beams are extensively applied in the engineering structures, in which the conceptual design of cross-sectional shape and topology is the most important issue. Traditional topology optimization methods cannot easily obtain the thin-walled features. Therefore, a thin-walled cross-sectional design method using the moving morphable components (MMC) approach is proposed in this paper. To acquire a thin-walled structure with a high stiffness-to-mass ratio, the cross-sectional area is defined as the objective function, and the cross-sectional bending and torsional moments of inertia are selected as constraints. The bending and torsional moments of inertia in arbitrary domain are both solved by using the finite element method. In addition, the sensitivities of cross-sectional area, bending moments of inertia, and torsional moment of inertia with respect to geometrical parameters of components are derived in the MMC framework, respectively. To demonstrate the effectiveness and accuracy of this method, numerical examples are given to consider the torsional, the bending, and the combined conditions, respectively. By post-process, the obtained thin-walled features can be further transformed into stamping sheets.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02792-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bending moments ; Computational Mathematics and Numerical Analysis ; Cross-sections ; Engineering ; Engineering Design ; Finite element method ; Moments of inertia ; Research Paper ; Stiffness ; Theoretical and Applied Mechanics ; Thin wall structures ; Topology optimization</subject><ispartof>Structural and multidisciplinary optimization, 2021-05, Vol.63 (5), p.2159-2176</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-33dc68440e8aea8f67bbc58075ca6562549a214768a2802ed41c0b33d5ed4dd93</citedby><cites>FETCH-LOGICAL-c319t-33dc68440e8aea8f67bbc58075ca6562549a214768a2802ed41c0b33d5ed4dd93</cites><orcidid>0000-0002-2003-6401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02792-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02792-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Guo, Guikai</creatorcontrib><creatorcontrib>Zhao, Yanfang</creatorcontrib><creatorcontrib>Su, Weihe</creatorcontrib><creatorcontrib>Zuo, Wenjie</creatorcontrib><title>Topology optimization of thin-walled cross section using moving morphable components approach</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Thin-walled beams are extensively applied in the engineering structures, in which the conceptual design of cross-sectional shape and topology is the most important issue. Traditional topology optimization methods cannot easily obtain the thin-walled features. Therefore, a thin-walled cross-sectional design method using the moving morphable components (MMC) approach is proposed in this paper. To acquire a thin-walled structure with a high stiffness-to-mass ratio, the cross-sectional area is defined as the objective function, and the cross-sectional bending and torsional moments of inertia are selected as constraints. The bending and torsional moments of inertia in arbitrary domain are both solved by using the finite element method. In addition, the sensitivities of cross-sectional area, bending moments of inertia, and torsional moment of inertia with respect to geometrical parameters of components are derived in the MMC framework, respectively. To demonstrate the effectiveness and accuracy of this method, numerical examples are given to consider the torsional, the bending, and the combined conditions, respectively. By post-process, the obtained thin-walled features can be further transformed into stamping sheets.</description><subject>Bending moments</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cross-sections</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Moments of inertia</subject><subject>Research Paper</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin wall structures</subject><subject>Topology optimization</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8Rydp06RHWfyCBS8KXiSkabrbpW1i0lXWX2_cit48DPNg3nsz8xA6p3BJAcRVBKBcEmCQSpSMwAGa0YJyQnMpD3-xeDlGJzFuAEBCXs7Q65PzrnOrHXZ-bPv2U4-tG7Br8LhuB_Khu87W2AQXI47W7Ifb2A4r3Lv3qQW_1lVnsXG9d4Mdxoi198Fpsz5FR43uoj376XP0fHvztLgny8e7h8X1kpiMliPJstoUMs_BSm21bApRVYZLENzogheM56Vm6fhCaiaB2TqnBqqk4gnWdZnN0cXkm9a-bW0c1cZtw5BWKsZpJhiUXCQWm1j7d4JtlA9tr8NOUVDfMaopRpViVPsYFSRRNoliIg8rG_6s_1F9AY-Odus</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Guo, Guikai</creator><creator>Zhao, Yanfang</creator><creator>Su, Weihe</creator><creator>Zuo, Wenjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2003-6401</orcidid></search><sort><creationdate>20210501</creationdate><title>Topology optimization of thin-walled cross section using moving morphable components approach</title><author>Guo, Guikai ; Zhao, Yanfang ; Su, Weihe ; Zuo, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-33dc68440e8aea8f67bbc58075ca6562549a214768a2802ed41c0b33d5ed4dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending moments</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cross-sections</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Moments of inertia</topic><topic>Research Paper</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin wall structures</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guikai</creatorcontrib><creatorcontrib>Zhao, Yanfang</creatorcontrib><creatorcontrib>Su, Weihe</creatorcontrib><creatorcontrib>Zuo, Wenjie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guikai</au><au>Zhao, Yanfang</au><au>Su, Weihe</au><au>Zuo, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology optimization of thin-walled cross section using moving morphable components approach</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>63</volume><issue>5</issue><spage>2159</spage><epage>2176</epage><pages>2159-2176</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Thin-walled beams are extensively applied in the engineering structures, in which the conceptual design of cross-sectional shape and topology is the most important issue. Traditional topology optimization methods cannot easily obtain the thin-walled features. Therefore, a thin-walled cross-sectional design method using the moving morphable components (MMC) approach is proposed in this paper. To acquire a thin-walled structure with a high stiffness-to-mass ratio, the cross-sectional area is defined as the objective function, and the cross-sectional bending and torsional moments of inertia are selected as constraints. The bending and torsional moments of inertia in arbitrary domain are both solved by using the finite element method. In addition, the sensitivities of cross-sectional area, bending moments of inertia, and torsional moment of inertia with respect to geometrical parameters of components are derived in the MMC framework, respectively. To demonstrate the effectiveness and accuracy of this method, numerical examples are given to consider the torsional, the bending, and the combined conditions, respectively. By post-process, the obtained thin-walled features can be further transformed into stamping sheets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02792-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2003-6401</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2021-05, Vol.63 (5), p.2159-2176 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2513720957 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bending moments Computational Mathematics and Numerical Analysis Cross-sections Engineering Engineering Design Finite element method Moments of inertia Research Paper Stiffness Theoretical and Applied Mechanics Thin wall structures Topology optimization |
title | Topology optimization of thin-walled cross section using moving morphable components approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20optimization%20of%20thin-walled%20cross%20section%20using%20moving%20morphable%20components%20approach&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Guo,%20Guikai&rft.date=2021-05-01&rft.volume=63&rft.issue=5&rft.spage=2159&rft.epage=2176&rft.pages=2159-2176&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02792-0&rft_dat=%3Cproquest_cross%3E2513720957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513720957&rft_id=info:pmid/&rfr_iscdi=true |