H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting
In this paper, we aim to study the asymptotic behavior (when ε → 0 ) of the solution of a quasilinear problem of the form - div ( A ε ( · , u ε ) ∇ u ε ) = f given in a perforated domain Ω \ T ε with a Neumann boundary condition on the holes T ε and a Dirichlet boundary condition on ∂ Ω . We show th...
Gespeichert in:
Veröffentlicht in: | Arabian journal of mathematics 2021-04, Vol.10 (1), p.91-101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Arabian journal of mathematics |
container_volume | 10 |
creator | Haddadou, Hamid |
description | In this paper, we aim to study the asymptotic behavior (when
ε
→
0
) of the solution of a quasilinear problem of the form
-
div
(
A
ε
(
·
,
u
ε
)
∇
u
ε
)
=
f
given in a perforated domain
Ω
\
T
ε
with a Neumann boundary condition on the holes
T
ε
and a Dirichlet boundary condition on
∂
Ω
. We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices
(
x
,
d
)
↦
A
ε
(
x
,
d
)
is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable
d
, the homogenization of the problem considered can be done in two steps. First, we fix the variable
d
and we homogenize the linear problem associated to
A
ε
(
·
,
d
)
in the perforated domain. Once the
H
0
-limit
A
0
(
·
,
d
)
of the pair
(
A
ε
,
T
ε
)
is determined, in the second step, we deduce that the solution
u
ε
converges in some sense to the unique solution
u
0
in
H
0
1
(
Ω
)
of the quasilinear equation
-
div
(
A
0
(
·
,
u
0
)
∇
u
)
=
χ
0
f
(where
χ
0
is
L
∞
weak
⋆
limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one. |
doi_str_mv | 10.1007/s40065-021-00314-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513720639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513720639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9450ddd2c51b877e839f82fc1dca870678085d88e7237523874c82c1c235b5c23</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0DngKeVydfm-xRilqh4EXPIU2yJaVN2mQr9N-buqI3LzNvZt57Aw-hWwL3BEA-FA7QigYoaQAY4Q2_QBNKOtYIJsjlL-bsGs1K2QAAAcEkIxOkF41N8dPntY_W49Rjg-3WlHKGh6MpYRuiNxn7OgwhxYJDxHuf-5TN4B12aWdC3a78KUV3voTkgsXFD0OI6xt01Ztt8bOfPkUfz0_v80WzfHt5nT8uG8tZOzQdF-Cco1aQlZLSK9b1ivaWOGuUhFYqUMIp5SVlUlCmJLeKWmIpEytR6xTdjb77nA5HXwa9Sccc60tNBWGSQsu6yqIjy-ZUSva93uewM_mkCehzlnrMUtcs9XeWmlcRG0WlkuPa5z_rf1RfrVt2YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513720639</pqid></control><display><type>article</type><title>H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Haddadou, Hamid</creator><creatorcontrib>Haddadou, Hamid</creatorcontrib><description>In this paper, we aim to study the asymptotic behavior (when
ε
→
0
) of the solution of a quasilinear problem of the form
-
div
(
A
ε
(
·
,
u
ε
)
∇
u
ε
)
=
f
given in a perforated domain
Ω
\
T
ε
with a Neumann boundary condition on the holes
T
ε
and a Dirichlet boundary condition on
∂
Ω
. We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices
(
x
,
d
)
↦
A
ε
(
x
,
d
)
is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable
d
, the homogenization of the problem considered can be done in two steps. First, we fix the variable
d
and we homogenize the linear problem associated to
A
ε
(
·
,
d
)
in the perforated domain. Once the
H
0
-limit
A
0
(
·
,
d
)
of the pair
(
A
ε
,
T
ε
)
is determined, in the second step, we deduce that the solution
u
ε
converges in some sense to the unique solution
u
0
in
H
0
1
(
Ω
)
of the quasilinear equation
-
div
(
A
0
(
·
,
u
0
)
∇
u
)
=
χ
0
f
(where
χ
0
is
L
∞
weak
⋆
limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one.</description><identifier>ISSN: 2193-5343</identifier><identifier>ISSN: 2193-5351</identifier><identifier>EISSN: 2193-5351</identifier><identifier>DOI: 10.1007/s40065-021-00314-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Boundary conditions ; Characteristic functions ; Coercivity ; Convergence ; Dirichlet problem ; Domains ; Mathematics ; Mathematics and Statistics ; Real variables</subject><ispartof>Arabian journal of mathematics, 2021-04, Vol.10 (1), p.91-101</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9450ddd2c51b877e839f82fc1dca870678085d88e7237523874c82c1c235b5c23</citedby><cites>FETCH-LOGICAL-c436t-9450ddd2c51b877e839f82fc1dca870678085d88e7237523874c82c1c235b5c23</cites><orcidid>0000-0003-0824-0124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40065-021-00314-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40065-021-00314-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Haddadou, Hamid</creatorcontrib><title>H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting</title><title>Arabian journal of mathematics</title><addtitle>Arab. J. Math</addtitle><description>In this paper, we aim to study the asymptotic behavior (when
ε
→
0
) of the solution of a quasilinear problem of the form
-
div
(
A
ε
(
·
,
u
ε
)
∇
u
ε
)
=
f
given in a perforated domain
Ω
\
T
ε
with a Neumann boundary condition on the holes
T
ε
and a Dirichlet boundary condition on
∂
Ω
. We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices
(
x
,
d
)
↦
A
ε
(
x
,
d
)
is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable
d
, the homogenization of the problem considered can be done in two steps. First, we fix the variable
d
and we homogenize the linear problem associated to
A
ε
(
·
,
d
)
in the perforated domain. Once the
H
0
-limit
A
0
(
·
,
d
)
of the pair
(
A
ε
,
T
ε
)
is determined, in the second step, we deduce that the solution
u
ε
converges in some sense to the unique solution
u
0
in
H
0
1
(
Ω
)
of the quasilinear equation
-
div
(
A
0
(
·
,
u
0
)
∇
u
)
=
χ
0
f
(where
χ
0
is
L
∞
weak
⋆
limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one.</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Characteristic functions</subject><subject>Coercivity</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Real variables</subject><issn>2193-5343</issn><issn>2193-5351</issn><issn>2193-5351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LAzEQDaJgqf0DngKeVydfm-xRilqh4EXPIU2yJaVN2mQr9N-buqI3LzNvZt57Aw-hWwL3BEA-FA7QigYoaQAY4Q2_QBNKOtYIJsjlL-bsGs1K2QAAAcEkIxOkF41N8dPntY_W49Rjg-3WlHKGh6MpYRuiNxn7OgwhxYJDxHuf-5TN4B12aWdC3a78KUV3voTkgsXFD0OI6xt01Ztt8bOfPkUfz0_v80WzfHt5nT8uG8tZOzQdF-Cco1aQlZLSK9b1ivaWOGuUhFYqUMIp5SVlUlCmJLeKWmIpEytR6xTdjb77nA5HXwa9Sccc60tNBWGSQsu6yqIjy-ZUSva93uewM_mkCehzlnrMUtcs9XeWmlcRG0WlkuPa5z_rf1RfrVt2YA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Haddadou, Hamid</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0824-0124</orcidid></search><sort><creationdate>20210401</creationdate><title>H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting</title><author>Haddadou, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9450ddd2c51b877e839f82fc1dca870678085d88e7237523874c82c1c235b5c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Characteristic functions</topic><topic>Coercivity</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Real variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Haddadou, Hamid</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Arabian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddadou, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting</atitle><jtitle>Arabian journal of mathematics</jtitle><stitle>Arab. J. Math</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>2193-5343</issn><issn>2193-5351</issn><eissn>2193-5351</eissn><abstract>In this paper, we aim to study the asymptotic behavior (when
ε
→
0
) of the solution of a quasilinear problem of the form
-
div
(
A
ε
(
·
,
u
ε
)
∇
u
ε
)
=
f
given in a perforated domain
Ω
\
T
ε
with a Neumann boundary condition on the holes
T
ε
and a Dirichlet boundary condition on
∂
Ω
. We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices
(
x
,
d
)
↦
A
ε
(
x
,
d
)
is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable
d
, the homogenization of the problem considered can be done in two steps. First, we fix the variable
d
and we homogenize the linear problem associated to
A
ε
(
·
,
d
)
in the perforated domain. Once the
H
0
-limit
A
0
(
·
,
d
)
of the pair
(
A
ε
,
T
ε
)
is determined, in the second step, we deduce that the solution
u
ε
converges in some sense to the unique solution
u
0
in
H
0
1
(
Ω
)
of the quasilinear equation
-
div
(
A
0
(
·
,
u
0
)
∇
u
)
=
χ
0
f
(where
χ
0
is
L
∞
weak
⋆
limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40065-021-00314-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0824-0124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-5343 |
ispartof | Arabian journal of mathematics, 2021-04, Vol.10 (1), p.91-101 |
issn | 2193-5343 2193-5351 2193-5351 |
language | eng |
recordid | cdi_proquest_journals_2513720639 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | Asymptotic properties Boundary conditions Characteristic functions Coercivity Convergence Dirichlet problem Domains Mathematics Mathematics and Statistics Real variables |
title | H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H-convergence%20of%20a%20class%20of%20quasilinear%20equations%20in%20perforated%20domains%20beyond%20periodic%20setting&rft.jtitle=Arabian%20journal%20of%20mathematics&rft.au=Haddadou,%20Hamid&rft.date=2021-04-01&rft.volume=10&rft.issue=1&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=2193-5343&rft.eissn=2193-5351&rft_id=info:doi/10.1007/s40065-021-00314-4&rft_dat=%3Cproquest_cross%3E2513720639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513720639&rft_id=info:pmid/&rfr_iscdi=true |