Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens

Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biology 2021-05, Vol.168 (5), Article 67
Hauptverfasser: Pairohakul, Supanut, Olive, Peter J. W., Bentley, Matthew G., Caldwell, Gary S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Marine biology
container_volume 168
creator Pairohakul, Supanut
Olive, Peter J. W.
Bentley, Matthew G.
Caldwell, Gary S.
description Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes (and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precursor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by adopting a stable isotope labelling approach. Worms were fed a 13 C-1-palmitic acid (C16:0) enriched diet with the resulting isotopically enriched lipid products identified over a 7-day period. The data showed strong evidence of lipid elongation and desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with docosahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase.
doi_str_mv 10.1007/s00227-021-03874-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2513719868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658879727</galeid><sourcerecordid>A658879727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-a172c39c5b5cfc4e340e7e04ab55a2a8dc095905b7c0075c4d1de91a28089cd3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-AU8Bz1nz0Zl0exsWXYUFL3MP1enqniw9SZukhf73ZneERRgkhyKp561K1UvIR8FvBefmc-ZcSsO4FIyr1jRMvSI70SjJhOnUa7Krec2U2Mu35F3Oj7zejVQ7sh1TXE7e0XWZEgw-TDSOdI5hYu4EPtAlztsaMpQ1QcGBjlDKRsH5IdN-e05XEAvmLxRoLtDPSH2OJS5IYVlSBHeia36qfJh9KUB_-4QhvydvRpgzfvgbb8jx29fj3Xf28PP-x93hgTmtmsJAGOlU53Sv3egaVA1Hg7yBXmuQ0A6Od7rjujeuLkK7ZhADdgJky9vODeqGfLqUrT_5tWIu9jGuKdSOVmqhjOjafftCTTCj9WGMJYE7--zsYa_b1nRGmkqxK9SEARPUleHo6_M__O0Vvp4Bz95dFciLwKWYc8LRLsmfIW1WcPtktL0YbavR9tloq6pIXUS5wmHC9DLhf1R_APjzq68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513719868</pqid></control><display><type>article</type><title>Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens</title><source>Springer Nature - Complete Springer Journals</source><creator>Pairohakul, Supanut ; Olive, Peter J. W. ; Bentley, Matthew G. ; Caldwell, Gary S.</creator><creatorcontrib>Pairohakul, Supanut ; Olive, Peter J. W. ; Bentley, Matthew G. ; Caldwell, Gary S.</creatorcontrib><description>Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes (and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precursor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by adopting a stable isotope labelling approach. Worms were fed a 13 C-1-palmitic acid (C16:0) enriched diet with the resulting isotopically enriched lipid products identified over a 7-day period. The data showed strong evidence of lipid elongation and desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with docosahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase.</description><identifier>ISSN: 0025-3162</identifier><identifier>EISSN: 1432-1793</identifier><identifier>DOI: 10.1007/s00227-021-03874-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alitta virens ; Aquaculture ; Biomedical and Life Sciences ; Biosynthesis ; Breeding stock ; Desaturase ; Desaturation ; Diet ; Docosahexaenoic acid ; Economic importance ; Elongation ; Eukaryotes ; Fatty acids ; Fish oils ; Food chains ; Food webs ; Freshwater &amp; Marine Ecology ; Isotope labelling ; Isotopic enrichment ; Labeling ; Life Sciences ; Lipids ; Marine &amp; Freshwater Sciences ; Marine biology ; Microbiology ; Nereid ; Oceanography ; Original Paper ; Palmitic acid ; Physiological aspects ; Phytoplankton ; Polychaeta ; Polyunsaturated fatty acids ; Stable isotopes ; Unsaturated fatty acids ; Zoology</subject><ispartof>Marine biology, 2021-05, Vol.168 (5), Article 67</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-a172c39c5b5cfc4e340e7e04ab55a2a8dc095905b7c0075c4d1de91a28089cd3</citedby><cites>FETCH-LOGICAL-c534t-a172c39c5b5cfc4e340e7e04ab55a2a8dc095905b7c0075c4d1de91a28089cd3</cites><orcidid>0000-0001-5687-6894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00227-021-03874-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00227-021-03874-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Pairohakul, Supanut</creatorcontrib><creatorcontrib>Olive, Peter J. W.</creatorcontrib><creatorcontrib>Bentley, Matthew G.</creatorcontrib><creatorcontrib>Caldwell, Gary S.</creatorcontrib><title>Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens</title><title>Marine biology</title><addtitle>Mar Biol</addtitle><description>Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes (and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precursor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by adopting a stable isotope labelling approach. Worms were fed a 13 C-1-palmitic acid (C16:0) enriched diet with the resulting isotopically enriched lipid products identified over a 7-day period. The data showed strong evidence of lipid elongation and desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with docosahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase.</description><subject>Alitta virens</subject><subject>Aquaculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Breeding stock</subject><subject>Desaturase</subject><subject>Desaturation</subject><subject>Diet</subject><subject>Docosahexaenoic acid</subject><subject>Economic importance</subject><subject>Elongation</subject><subject>Eukaryotes</subject><subject>Fatty acids</subject><subject>Fish oils</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Isotope labelling</subject><subject>Isotopic enrichment</subject><subject>Labeling</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Marine biology</subject><subject>Microbiology</subject><subject>Nereid</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Palmitic acid</subject><subject>Physiological aspects</subject><subject>Phytoplankton</subject><subject>Polychaeta</subject><subject>Polyunsaturated fatty acids</subject><subject>Stable isotopes</subject><subject>Unsaturated fatty acids</subject><subject>Zoology</subject><issn>0025-3162</issn><issn>1432-1793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU2LFDEQhoMoOK7-AU8Bz1nz0Zl0exsWXYUFL3MP1enqniw9SZukhf73ZneERRgkhyKp561K1UvIR8FvBefmc-ZcSsO4FIyr1jRMvSI70SjJhOnUa7Krec2U2Mu35F3Oj7zejVQ7sh1TXE7e0XWZEgw-TDSOdI5hYu4EPtAlztsaMpQ1QcGBjlDKRsH5IdN-e05XEAvmLxRoLtDPSH2OJS5IYVlSBHeia36qfJh9KUB_-4QhvydvRpgzfvgbb8jx29fj3Xf28PP-x93hgTmtmsJAGOlU53Sv3egaVA1Hg7yBXmuQ0A6Od7rjujeuLkK7ZhADdgJky9vODeqGfLqUrT_5tWIu9jGuKdSOVmqhjOjafftCTTCj9WGMJYE7--zsYa_b1nRGmkqxK9SEARPUleHo6_M__O0Vvp4Bz95dFciLwKWYc8LRLsmfIW1WcPtktL0YbavR9tloq6pIXUS5wmHC9DLhf1R_APjzq68</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Pairohakul, Supanut</creator><creator>Olive, Peter J. W.</creator><creator>Bentley, Matthew G.</creator><creator>Caldwell, Gary S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5687-6894</orcidid></search><sort><creationdate>20210501</creationdate><title>Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens</title><author>Pairohakul, Supanut ; Olive, Peter J. W. ; Bentley, Matthew G. ; Caldwell, Gary S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-a172c39c5b5cfc4e340e7e04ab55a2a8dc095905b7c0075c4d1de91a28089cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alitta virens</topic><topic>Aquaculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Breeding stock</topic><topic>Desaturase</topic><topic>Desaturation</topic><topic>Diet</topic><topic>Docosahexaenoic acid</topic><topic>Economic importance</topic><topic>Elongation</topic><topic>Eukaryotes</topic><topic>Fatty acids</topic><topic>Fish oils</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Isotope labelling</topic><topic>Isotopic enrichment</topic><topic>Labeling</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Marine biology</topic><topic>Microbiology</topic><topic>Nereid</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Palmitic acid</topic><topic>Physiological aspects</topic><topic>Phytoplankton</topic><topic>Polychaeta</topic><topic>Polyunsaturated fatty acids</topic><topic>Stable isotopes</topic><topic>Unsaturated fatty acids</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pairohakul, Supanut</creatorcontrib><creatorcontrib>Olive, Peter J. W.</creatorcontrib><creatorcontrib>Bentley, Matthew G.</creatorcontrib><creatorcontrib>Caldwell, Gary S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pairohakul, Supanut</au><au>Olive, Peter J. W.</au><au>Bentley, Matthew G.</au><au>Caldwell, Gary S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens</atitle><jtitle>Marine biology</jtitle><stitle>Mar Biol</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>168</volume><issue>5</issue><artnum>67</artnum><issn>0025-3162</issn><eissn>1432-1793</eissn><abstract>Polychaete worms are rich sources of polyunsaturated fatty acids (PUFA) and are increasingly incorporated into aquaculture broodstock diets. Conventionally, the build-up of PUFA in polychaetes was considered passive, with direct accumulation along the food web, originating with microalgae and other primary producers. However, it has been argued that polychaetes (and other multicellular eukaryotes) are capable of PUFA biosynthesis through the elongation and desaturation of precursor lipids. We further test this hypothesis in the ecologically and economically important nereid polychaete Alitta virens by adopting a stable isotope labelling approach. Worms were fed a 13 C-1-palmitic acid (C16:0) enriched diet with the resulting isotopically enriched lipid products identified over a 7-day period. The data showed strong evidence of lipid elongation and desaturation, but with a high rate of PUFA turnover. A putative biosynthetic pathway is proposed, terminating with docosahexaenoic acid (DHA) via arachidonic (AA) and eicosapentaenoic acids (EPA) and involving a Δ8 desaturase.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00227-021-03874-3</doi><orcidid>https://orcid.org/0000-0001-5687-6894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-3162
ispartof Marine biology, 2021-05, Vol.168 (5), Article 67
issn 0025-3162
1432-1793
language eng
recordid cdi_proquest_journals_2513719868
source Springer Nature - Complete Springer Journals
subjects Alitta virens
Aquaculture
Biomedical and Life Sciences
Biosynthesis
Breeding stock
Desaturase
Desaturation
Diet
Docosahexaenoic acid
Economic importance
Elongation
Eukaryotes
Fatty acids
Fish oils
Food chains
Food webs
Freshwater & Marine Ecology
Isotope labelling
Isotopic enrichment
Labeling
Life Sciences
Lipids
Marine & Freshwater Sciences
Marine biology
Microbiology
Nereid
Oceanography
Original Paper
Palmitic acid
Physiological aspects
Phytoplankton
Polychaeta
Polyunsaturated fatty acids
Stable isotopes
Unsaturated fatty acids
Zoology
title Trophic upgrading of long-chain polyunsaturated fatty acids by polychaetes: a stable isotope approach using Alitta virens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trophic%20upgrading%20of%20long-chain%20polyunsaturated%20fatty%20acids%20by%20polychaetes:%20a%20stable%20isotope%20approach%20using%20Alitta%20virens&rft.jtitle=Marine%20biology&rft.au=Pairohakul,%20Supanut&rft.date=2021-05-01&rft.volume=168&rft.issue=5&rft.artnum=67&rft.issn=0025-3162&rft.eissn=1432-1793&rft_id=info:doi/10.1007/s00227-021-03874-3&rft_dat=%3Cgale_proqu%3EA658879727%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513719868&rft_id=info:pmid/&rft_galeid=A658879727&rfr_iscdi=true