Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra
Soil salinization is a world-wide phenomenon that threatens ecological environment and agricultural production. Modeling soil salt content (SSC) is a big challenge because of its huge spatiotemporal variation and the interference of soil water content (SWC) and soil salt types. Prior studies showed...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2021-04, Vol.49 (4), p.959-969 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 969 |
---|---|
container_issue | 4 |
container_start_page | 959 |
container_title | Journal of the Indian Society of Remote Sensing |
container_volume | 49 |
creator | Xu, Lu Wang, Zhichun Hu, Jinshan Wang, Shuguo Nyongesah, John Maina |
description | Soil salinization is a world-wide phenomenon that threatens ecological environment and agricultural production. Modeling soil salt content (SSC) is a big challenge because of its huge spatiotemporal variation and the interference of soil water content (SWC) and soil salt types. Prior studies showed more interest in the use of hyperspectral reflectance, while few studies focused on thermal infrared band domain. In this study, we arranged samples with three salt types and several levels of SWC and measured the soil emissivity for each sample at each level of SWC. We employed both original and derivate emissivity to figure out the relationship between SSC and soil thermal infrared spectra, then used partial least squares regression to estimate SSC. Finally, the optimal model was determined with the evaluation criteria, RPD (ratio of performance to deviation) for predictive ability and AICc (corrected Akaike Information Criterion) for simplicity. The models were applied to estimate SSC and coefficient of determination (R
2
) of 0.67, 0.71, 0.69 and 0.7, and root mean relative error of 4.03, 3.78, 3.92, 3.86 (g/100 g) was obtained, respectively, for NaCl, Na
2
SO
4
, Na
2
CO
3
and all salt types. The study provided a comparison result of three salt types for soil salinity estimation and a criterion for modeling effectively and succinctly and should have potential applications in the future. |
doi_str_mv | 10.1007/s12524-020-01271-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513580933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513580933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5530bbf976acd961e2e08c2ed23e70823a6bd0e8aae5dc50bb57d6279de50923</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwApwscQ6s7TqJj1CVH6mIQ1vEzXJip7hK47J2D317XILEjdOuZmdmpS_LrincUoDyLlAm2CQHBjlQVtJcnmQjkOUk5wDFadqZEHlRwMd5dhHCJokTQdkow1mIbquj8z3xLVl415GF7lzv4oGsemORvGt0fh-G26t3Ie7RkqnvjTvGAlkF16_JXNcedfR4IA86WEOWnxa3uiMvfYsak7DY2SaivszOWt0Fe_U7x9nqcbacPufzt6eX6f08bziVMW-F4FDXrSwL3RhZUMssVA2zhnFbQsW4LmoDttLaCtOI5BWlKVgpjRUgGR9nN0PvDv3X3oaoNn6PfXqpmKBcVCA5Ty42uBr0IaBt1Q4TEDwoCurIVg1sVWKrftgqmUJ8CIVk7tcW_6r_SX0DJSF98Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513580933</pqid></control><display><type>article</type><title>Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Lu ; Wang, Zhichun ; Hu, Jinshan ; Wang, Shuguo ; Nyongesah, John Maina</creator><creatorcontrib>Xu, Lu ; Wang, Zhichun ; Hu, Jinshan ; Wang, Shuguo ; Nyongesah, John Maina</creatorcontrib><description>Soil salinization is a world-wide phenomenon that threatens ecological environment and agricultural production. Modeling soil salt content (SSC) is a big challenge because of its huge spatiotemporal variation and the interference of soil water content (SWC) and soil salt types. Prior studies showed more interest in the use of hyperspectral reflectance, while few studies focused on thermal infrared band domain. In this study, we arranged samples with three salt types and several levels of SWC and measured the soil emissivity for each sample at each level of SWC. We employed both original and derivate emissivity to figure out the relationship between SSC and soil thermal infrared spectra, then used partial least squares regression to estimate SSC. Finally, the optimal model was determined with the evaluation criteria, RPD (ratio of performance to deviation) for predictive ability and AICc (corrected Akaike Information Criterion) for simplicity. The models were applied to estimate SSC and coefficient of determination (R
2
) of 0.67, 0.71, 0.69 and 0.7, and root mean relative error of 4.03, 3.78, 3.92, 3.86 (g/100 g) was obtained, respectively, for NaCl, Na
2
SO
4
, Na
2
CO
3
and all salt types. The study provided a comparison result of three salt types for soil salinity estimation and a criterion for modeling effectively and succinctly and should have potential applications in the future.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-020-01271-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Agricultural production ; Criteria ; Earth and Environmental Science ; Earth Sciences ; Emissivity ; Environment models ; Infrared spectra ; Least squares method ; Model testing ; Moisture content ; Remote Sensing/Photogrammetry ; Research Article ; Salinity ; Salinization ; Salts ; Sodium carbonate ; Sodium chloride ; Sodium sulfate ; Soil conditions ; Soil moisture ; Soil salinity ; Soil water ; Water content</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2021-04, Vol.49 (4), p.959-969</ispartof><rights>Indian Society of Remote Sensing 2020</rights><rights>Indian Society of Remote Sensing 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5530bbf976acd961e2e08c2ed23e70823a6bd0e8aae5dc50bb57d6279de50923</citedby><cites>FETCH-LOGICAL-c319t-f5530bbf976acd961e2e08c2ed23e70823a6bd0e8aae5dc50bb57d6279de50923</cites><orcidid>0000-0003-3029-257X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-020-01271-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-020-01271-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Wang, Zhichun</creatorcontrib><creatorcontrib>Hu, Jinshan</creatorcontrib><creatorcontrib>Wang, Shuguo</creatorcontrib><creatorcontrib>Nyongesah, John Maina</creatorcontrib><title>Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>Soil salinization is a world-wide phenomenon that threatens ecological environment and agricultural production. Modeling soil salt content (SSC) is a big challenge because of its huge spatiotemporal variation and the interference of soil water content (SWC) and soil salt types. Prior studies showed more interest in the use of hyperspectral reflectance, while few studies focused on thermal infrared band domain. In this study, we arranged samples with three salt types and several levels of SWC and measured the soil emissivity for each sample at each level of SWC. We employed both original and derivate emissivity to figure out the relationship between SSC and soil thermal infrared spectra, then used partial least squares regression to estimate SSC. Finally, the optimal model was determined with the evaluation criteria, RPD (ratio of performance to deviation) for predictive ability and AICc (corrected Akaike Information Criterion) for simplicity. The models were applied to estimate SSC and coefficient of determination (R
2
) of 0.67, 0.71, 0.69 and 0.7, and root mean relative error of 4.03, 3.78, 3.92, 3.86 (g/100 g) was obtained, respectively, for NaCl, Na
2
SO
4
, Na
2
CO
3
and all salt types. The study provided a comparison result of three salt types for soil salinity estimation and a criterion for modeling effectively and succinctly and should have potential applications in the future.</description><subject>Agricultural production</subject><subject>Criteria</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Emissivity</subject><subject>Environment models</subject><subject>Infrared spectra</subject><subject>Least squares method</subject><subject>Model testing</subject><subject>Moisture content</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><subject>Salinity</subject><subject>Salinization</subject><subject>Salts</subject><subject>Sodium carbonate</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soil salinity</subject><subject>Soil water</subject><subject>Water content</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqXwApwscQ6s7TqJj1CVH6mIQ1vEzXJip7hK47J2D317XILEjdOuZmdmpS_LrincUoDyLlAm2CQHBjlQVtJcnmQjkOUk5wDFadqZEHlRwMd5dhHCJokTQdkow1mIbquj8z3xLVl415GF7lzv4oGsemORvGt0fh-G26t3Ie7RkqnvjTvGAlkF16_JXNcedfR4IA86WEOWnxa3uiMvfYsak7DY2SaivszOWt0Fe_U7x9nqcbacPufzt6eX6f08bziVMW-F4FDXrSwL3RhZUMssVA2zhnFbQsW4LmoDttLaCtOI5BWlKVgpjRUgGR9nN0PvDv3X3oaoNn6PfXqpmKBcVCA5Ty42uBr0IaBt1Q4TEDwoCurIVg1sVWKrftgqmUJ8CIVk7tcW_6r_SX0DJSF98Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xu, Lu</creator><creator>Wang, Zhichun</creator><creator>Hu, Jinshan</creator><creator>Wang, Shuguo</creator><creator>Nyongesah, John Maina</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3029-257X</orcidid></search><sort><creationdate>20210401</creationdate><title>Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra</title><author>Xu, Lu ; Wang, Zhichun ; Hu, Jinshan ; Wang, Shuguo ; Nyongesah, John Maina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5530bbf976acd961e2e08c2ed23e70823a6bd0e8aae5dc50bb57d6279de50923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural production</topic><topic>Criteria</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Emissivity</topic><topic>Environment models</topic><topic>Infrared spectra</topic><topic>Least squares method</topic><topic>Model testing</topic><topic>Moisture content</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><topic>Salinity</topic><topic>Salinization</topic><topic>Salts</topic><topic>Sodium carbonate</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soil salinity</topic><topic>Soil water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lu</creatorcontrib><creatorcontrib>Wang, Zhichun</creatorcontrib><creatorcontrib>Hu, Jinshan</creatorcontrib><creatorcontrib>Wang, Shuguo</creatorcontrib><creatorcontrib>Nyongesah, John Maina</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lu</au><au>Wang, Zhichun</au><au>Hu, Jinshan</au><au>Wang, Shuguo</au><au>Nyongesah, John Maina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>49</volume><issue>4</issue><spage>959</spage><epage>969</epage><pages>959-969</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>Soil salinization is a world-wide phenomenon that threatens ecological environment and agricultural production. Modeling soil salt content (SSC) is a big challenge because of its huge spatiotemporal variation and the interference of soil water content (SWC) and soil salt types. Prior studies showed more interest in the use of hyperspectral reflectance, while few studies focused on thermal infrared band domain. In this study, we arranged samples with three salt types and several levels of SWC and measured the soil emissivity for each sample at each level of SWC. We employed both original and derivate emissivity to figure out the relationship between SSC and soil thermal infrared spectra, then used partial least squares regression to estimate SSC. Finally, the optimal model was determined with the evaluation criteria, RPD (ratio of performance to deviation) for predictive ability and AICc (corrected Akaike Information Criterion) for simplicity. The models were applied to estimate SSC and coefficient of determination (R
2
) of 0.67, 0.71, 0.69 and 0.7, and root mean relative error of 4.03, 3.78, 3.92, 3.86 (g/100 g) was obtained, respectively, for NaCl, Na
2
SO
4
, Na
2
CO
3
and all salt types. The study provided a comparison result of three salt types for soil salinity estimation and a criterion for modeling effectively and succinctly and should have potential applications in the future.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-020-01271-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3029-257X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-660X |
ispartof | Journal of the Indian Society of Remote Sensing, 2021-04, Vol.49 (4), p.959-969 |
issn | 0255-660X 0974-3006 |
language | eng |
recordid | cdi_proquest_journals_2513580933 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agricultural production Criteria Earth and Environmental Science Earth Sciences Emissivity Environment models Infrared spectra Least squares method Model testing Moisture content Remote Sensing/Photogrammetry Research Article Salinity Salinization Salts Sodium carbonate Sodium chloride Sodium sulfate Soil conditions Soil moisture Soil salinity Soil water Water content |
title | Estimation of Soil Salinity Under Various Soil Moisture Conditions Using Laboratory Based Thermal Infrared Spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Soil%20Salinity%20Under%20Various%20Soil%20Moisture%20Conditions%20Using%20Laboratory%20Based%20Thermal%20Infrared%20Spectra&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Xu,%20Lu&rft.date=2021-04-01&rft.volume=49&rft.issue=4&rft.spage=959&rft.epage=969&rft.pages=959-969&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-020-01271-9&rft_dat=%3Cproquest_cross%3E2513580933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513580933&rft_id=info:pmid/&rfr_iscdi=true |