Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case
We study a generalized class of supersolutions, so-called p -supercaloric functions, to the parabolic p -Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relative...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2021-05, Vol.28 (3), Article 33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Nonlinear differential equations and applications |
container_volume | 28 |
creator | Giri, Ratan Kr Kinnunen, Juha Moring, Kristian |
description | We study a generalized class of supersolutions, so-called
p
-supercaloric functions, to the parabolic
p
-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for
p
≥
2
, but little is known in the fast diffusion case
1
<
p
<
2
. Every bounded
p
-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic
p
-Laplace equation for the entire range
1
<
p
<
∞
. Our main result shows that unbounded
p
-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case
2
n
n
+
1
<
p
<
2
. The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case
1
<
p
≤
2
n
n
+
1
and the theory is not yet well understood. |
doi_str_mv | 10.1007/s00030-021-00694-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513579952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513579952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f79c150bad34d3d705bd5d90f508c7bdc05ea7e2a92196ac61cdfcaadfbbbc223</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpGmapQy-YMCFj224zUM71LaTtAv_ve1UcOfqXu75zrlwCLlkcM0A1E0CAAEUOKMAhc5peURWLOdANUB-PO2zpBXnp-QspR0AU4XQK_L-MvY-Wmy6WNssjK0d6q5NWehiNnz6rMeIVddMWk-32Ddofeb3I85UVrcHJmAaMleHMKb5ajH5c3ISsEn-4neuydv93evmkW6fH542t1tqRSEGGpS2TEKFTuROOAWyctJpCBJKqypnQXpUnqPmTBdoC2ZdsIguVFVlORdrcrXk9rHbjz4NZteNsZ1eGi6ZkEprOVN8oWzsUoo-mD7WXxi_DQMz92eW_sxUkjn0Z8rJJBZTmuD2w8e_6H9cPzaqdJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513579952</pqid></control><display><type>article</type><title>Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case</title><source>SpringerNature Journals</source><creator>Giri, Ratan Kr ; Kinnunen, Juha ; Moring, Kristian</creator><creatorcontrib>Giri, Ratan Kr ; Kinnunen, Juha ; Moring, Kristian</creatorcontrib><description><![CDATA[We study a generalized class of supersolutions, so-called
p
-supercaloric functions, to the parabolic
p
-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for
p
≥
2
, but little is known in the fast diffusion case
1
<
p
<
2
. Every bounded
p
-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic
p
-Laplace equation for the entire range
1
<
p
<
∞
. Our main result shows that unbounded
p
-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case
2
n
n
+
1
<
p
<
2
. The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case
1
<
p
≤
2
n
n
+
1
and the theory is not yet well understood.]]></description><identifier>ISSN: 1021-9722</identifier><identifier>EISSN: 1420-9004</identifier><identifier>DOI: 10.1007/s00030-021-00694-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Diffusion rate ; Laplace equation ; Mathematics ; Mathematics and Statistics ; Sobolev space</subject><ispartof>Nonlinear differential equations and applications, 2021-05, Vol.28 (3), Article 33</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f79c150bad34d3d705bd5d90f508c7bdc05ea7e2a92196ac61cdfcaadfbbbc223</citedby><cites>FETCH-LOGICAL-c363t-f79c150bad34d3d705bd5d90f508c7bdc05ea7e2a92196ac61cdfcaadfbbbc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00030-021-00694-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00030-021-00694-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Giri, Ratan Kr</creatorcontrib><creatorcontrib>Kinnunen, Juha</creatorcontrib><creatorcontrib>Moring, Kristian</creatorcontrib><title>Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case</title><title>Nonlinear differential equations and applications</title><addtitle>Nonlinear Differ. Equ. Appl</addtitle><description><![CDATA[We study a generalized class of supersolutions, so-called
p
-supercaloric functions, to the parabolic
p
-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for
p
≥
2
, but little is known in the fast diffusion case
1
<
p
<
2
. Every bounded
p
-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic
p
-Laplace equation for the entire range
1
<
p
<
∞
. Our main result shows that unbounded
p
-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case
2
n
n
+
1
<
p
<
2
. The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case
1
<
p
≤
2
n
n
+
1
and the theory is not yet well understood.]]></description><subject>Analysis</subject><subject>Diffusion rate</subject><subject>Laplace equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sobolev space</subject><issn>1021-9722</issn><issn>1420-9004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GbpGmapQy-YMCFj224zUM71LaTtAv_ve1UcOfqXu75zrlwCLlkcM0A1E0CAAEUOKMAhc5peURWLOdANUB-PO2zpBXnp-QspR0AU4XQK_L-MvY-Wmy6WNssjK0d6q5NWehiNnz6rMeIVddMWk-32Ddofeb3I85UVrcHJmAaMleHMKb5ajH5c3ISsEn-4neuydv93evmkW6fH542t1tqRSEGGpS2TEKFTuROOAWyctJpCBJKqypnQXpUnqPmTBdoC2ZdsIguVFVlORdrcrXk9rHbjz4NZteNsZ1eGi6ZkEprOVN8oWzsUoo-mD7WXxi_DQMz92eW_sxUkjn0Z8rJJBZTmuD2w8e_6H9cPzaqdJg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Giri, Ratan Kr</creator><creator>Kinnunen, Juha</creator><creator>Moring, Kristian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210501</creationdate><title>Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case</title><author>Giri, Ratan Kr ; Kinnunen, Juha ; Moring, Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f79c150bad34d3d705bd5d90f508c7bdc05ea7e2a92196ac61cdfcaadfbbbc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Diffusion rate</topic><topic>Laplace equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Ratan Kr</creatorcontrib><creatorcontrib>Kinnunen, Juha</creatorcontrib><creatorcontrib>Moring, Kristian</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Nonlinear differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Ratan Kr</au><au>Kinnunen, Juha</au><au>Moring, Kristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case</atitle><jtitle>Nonlinear differential equations and applications</jtitle><stitle>Nonlinear Differ. Equ. Appl</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>28</volume><issue>3</issue><artnum>33</artnum><issn>1021-9722</issn><eissn>1420-9004</eissn><abstract><![CDATA[We study a generalized class of supersolutions, so-called
p
-supercaloric functions, to the parabolic
p
-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for
p
≥
2
, but little is known in the fast diffusion case
1
<
p
<
2
. Every bounded
p
-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic
p
-Laplace equation for the entire range
1
<
p
<
∞
. Our main result shows that unbounded
p
-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case
2
n
n
+
1
<
p
<
2
. The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case
1
<
p
≤
2
n
n
+
1
and the theory is not yet well understood.]]></abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00030-021-00694-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1021-9722 |
ispartof | Nonlinear differential equations and applications, 2021-05, Vol.28 (3), Article 33 |
issn | 1021-9722 1420-9004 |
language | eng |
recordid | cdi_proquest_journals_2513579952 |
source | SpringerNature Journals |
subjects | Analysis Diffusion rate Laplace equation Mathematics Mathematics and Statistics Sobolev space |
title | Supercaloric functions for the parabolic p-Laplace equation in the fast diffusion case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercaloric%20functions%20for%20the%20parabolic%20p-Laplace%20equation%20in%20the%20fast%20diffusion%20case&rft.jtitle=Nonlinear%20differential%20equations%20and%20applications&rft.au=Giri,%20Ratan%20Kr&rft.date=2021-05-01&rft.volume=28&rft.issue=3&rft.artnum=33&rft.issn=1021-9722&rft.eissn=1420-9004&rft_id=info:doi/10.1007/s00030-021-00694-8&rft_dat=%3Cproquest_cross%3E2513579952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513579952&rft_id=info:pmid/&rfr_iscdi=true |