Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition
Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually empl...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-03, Vol.80 (8), p.11887-11902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11902 |
---|---|
container_issue | 8 |
container_start_page | 11887 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Sun, Zhiyong Ye, Junyong Wang, Tongqing Jiang, Li Li, Yang |
description | Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss. |
doi_str_mv | 10.1007/s11042-020-10108-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513419613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513419613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKcFz9FMkt3sHqXUDyh40XPIZmdLSk1qkgXtrzftCr15mjB53mfgLYpboPdAqXyIAFQwQhklQIE2ZH9WzKCSnEjJ4Dy_eUOJrChcFlcxbiiFumJiVvjl927rbbJuXVqXMGiTrHelH8rBOiy160vjdYhYDqjTGDAedzqlYLsxYf4l3pgxBHQmQz6UOwwxK05IQOPXzh7E18XFoLcRb_7mvPh4Wr4vXsjq7fl18bgihkObCOuMNlXdSWxk2w8gaKXrCjuha0StwXDT97wzXDeiFQN2pmVGcNFS2aI2nM-Lu8m7C_5rxJjUxo_B5ZOKVcAFtDUcKDZRJvgYAw5qF-ynDj8KqDoUq6ZiVS5WHYtV-xziUyhm2K0xnNT_pH4BfJV_SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513419613</pqid></control><display><type>article</type><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><source>SpringerLink Journals</source><creator>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</creator><creatorcontrib>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</creatorcontrib><description>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10108-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Computer vision ; Convolution ; Data Structures and Information Theory ; Datasets ; Feature maps ; Model testing ; Multimedia Information Systems ; Object recognition ; Representations ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-03, Vol.80 (8), p.11887-11902</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</citedby><cites>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</cites><orcidid>0000-0002-0944-2900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10108-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10108-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Ye, Junyong</creatorcontrib><creatorcontrib>Wang, Tongqing</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Feature maps</subject><subject>Model testing</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Representations</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhhdRsFb_gKcFz9FMkt3sHqXUDyh40XPIZmdLSk1qkgXtrzftCr15mjB53mfgLYpboPdAqXyIAFQwQhklQIE2ZH9WzKCSnEjJ4Dy_eUOJrChcFlcxbiiFumJiVvjl927rbbJuXVqXMGiTrHelH8rBOiy160vjdYhYDqjTGDAedzqlYLsxYf4l3pgxBHQmQz6UOwwxK05IQOPXzh7E18XFoLcRb_7mvPh4Wr4vXsjq7fl18bgihkObCOuMNlXdSWxk2w8gaKXrCjuha0StwXDT97wzXDeiFQN2pmVGcNFS2aI2nM-Lu8m7C_5rxJjUxo_B5ZOKVcAFtDUcKDZRJvgYAw5qF-ynDj8KqDoUq6ZiVS5WHYtV-xziUyhm2K0xnNT_pH4BfJV_SQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sun, Zhiyong</creator><creator>Ye, Junyong</creator><creator>Wang, Tongqing</creator><creator>Jiang, Li</creator><creator>Li, Yang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0944-2900</orcidid></search><sort><creationdate>20210301</creationdate><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><author>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Feature maps</topic><topic>Model testing</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Representations</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Ye, Junyong</creatorcontrib><creatorcontrib>Wang, Tongqing</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhiyong</au><au>Ye, Junyong</au><au>Wang, Tongqing</au><au>Jiang, Li</au><au>Li, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>80</volume><issue>8</issue><spage>11887</spage><epage>11902</epage><pages>11887-11902</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10108-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0944-2900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-03, Vol.80 (8), p.11887-11902 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2513419613 |
source | SpringerLink Journals |
subjects | Artificial neural networks Computer Communication Networks Computer Science Computer vision Convolution Data Structures and Information Theory Datasets Feature maps Model testing Multimedia Information Systems Object recognition Representations Special Purpose and Application-Based Systems |
title | Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20interaction%20of%20fine%20and%20coarse%20features%20and%20attribute%20co-occurrence%20for%20person%20attribute%20recognition&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sun,%20Zhiyong&rft.date=2021-03-01&rft.volume=80&rft.issue=8&rft.spage=11887&rft.epage=11902&rft.pages=11887-11902&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10108-z&rft_dat=%3Cproquest_cross%3E2513419613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513419613&rft_id=info:pmid/&rfr_iscdi=true |