Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition

Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually empl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-03, Vol.80 (8), p.11887-11902
Hauptverfasser: Sun, Zhiyong, Ye, Junyong, Wang, Tongqing, Jiang, Li, Li, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11902
container_issue 8
container_start_page 11887
container_title Multimedia tools and applications
container_volume 80
creator Sun, Zhiyong
Ye, Junyong
Wang, Tongqing
Jiang, Li
Li, Yang
description Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.
doi_str_mv 10.1007/s11042-020-10108-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513419613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513419613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKcFz9FMkt3sHqXUDyh40XPIZmdLSk1qkgXtrzftCr15mjB53mfgLYpboPdAqXyIAFQwQhklQIE2ZH9WzKCSnEjJ4Dy_eUOJrChcFlcxbiiFumJiVvjl927rbbJuXVqXMGiTrHelH8rBOiy160vjdYhYDqjTGDAedzqlYLsxYf4l3pgxBHQmQz6UOwwxK05IQOPXzh7E18XFoLcRb_7mvPh4Wr4vXsjq7fl18bgihkObCOuMNlXdSWxk2w8gaKXrCjuha0StwXDT97wzXDeiFQN2pmVGcNFS2aI2nM-Lu8m7C_5rxJjUxo_B5ZOKVcAFtDUcKDZRJvgYAw5qF-ynDj8KqDoUq6ZiVS5WHYtV-xziUyhm2K0xnNT_pH4BfJV_SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513419613</pqid></control><display><type>article</type><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><source>SpringerLink Journals</source><creator>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</creator><creatorcontrib>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</creatorcontrib><description>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10108-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Computer vision ; Convolution ; Data Structures and Information Theory ; Datasets ; Feature maps ; Model testing ; Multimedia Information Systems ; Object recognition ; Representations ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-03, Vol.80 (8), p.11887-11902</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</citedby><cites>FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</cites><orcidid>0000-0002-0944-2900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10108-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10108-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Ye, Junyong</creatorcontrib><creatorcontrib>Wang, Tongqing</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Feature maps</subject><subject>Model testing</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Representations</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhhdRsFb_gKcFz9FMkt3sHqXUDyh40XPIZmdLSk1qkgXtrzftCr15mjB53mfgLYpboPdAqXyIAFQwQhklQIE2ZH9WzKCSnEjJ4Dy_eUOJrChcFlcxbiiFumJiVvjl927rbbJuXVqXMGiTrHelH8rBOiy160vjdYhYDqjTGDAedzqlYLsxYf4l3pgxBHQmQz6UOwwxK05IQOPXzh7E18XFoLcRb_7mvPh4Wr4vXsjq7fl18bgihkObCOuMNlXdSWxk2w8gaKXrCjuha0StwXDT97wzXDeiFQN2pmVGcNFS2aI2nM-Lu8m7C_5rxJjUxo_B5ZOKVcAFtDUcKDZRJvgYAw5qF-ynDj8KqDoUq6ZiVS5WHYtV-xziUyhm2K0xnNT_pH4BfJV_SQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sun, Zhiyong</creator><creator>Ye, Junyong</creator><creator>Wang, Tongqing</creator><creator>Jiang, Li</creator><creator>Li, Yang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0944-2900</orcidid></search><sort><creationdate>20210301</creationdate><title>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</title><author>Sun, Zhiyong ; Ye, Junyong ; Wang, Tongqing ; Jiang, Li ; Li, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2bcac56b7e879df1405a65eb4a6eeaa1c3cdd3bc3a8494febc92c4349079eac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Feature maps</topic><topic>Model testing</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Representations</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Ye, Junyong</creatorcontrib><creatorcontrib>Wang, Tongqing</creatorcontrib><creatorcontrib>Jiang, Li</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhiyong</au><au>Ye, Junyong</au><au>Wang, Tongqing</au><au>Jiang, Li</au><au>Li, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>80</volume><issue>8</issue><spage>11887</spage><epage>11902</epage><pages>11887-11902</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Person attribute recognition, i.e., the prediction of a fixed set of semantic attributes given an image of a person, becomes an important topic in the field of computer vision. Recently, methods based on convolutional neural networks have shown outstanding performance in this area. They usually employ a CNN network to mine the shared feature representation followed by several layers for attribute classification. To improve the representation ability of the model, many methods element-add or concatenate coarse and fine feature maps to fuse information at different feature levels. However, these methods didn’t fully exploit the interaction of multi-level convolutional feature maps for person attribute analysis and not consider the correlation of attributes for the same person. In this paper, we introduce a kind of correlation feature, which exploits the high order interaction of coarse and fine feature maps to capture the robust feature representation from multi-level convolution layers as the image representation for person attribute recognition. Moreover, we propose an intraperson attribute loss to explicitly model the correlation of attributes for the same person. We experiment our proposed model on CIFAR-10 dataset, Berkeley Human Attributes dataset, PA-100 K dataset, and experimental results show the better performance of the feature representation and the effectiveness of intra-person attribute loss.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10108-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0944-2900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-03, Vol.80 (8), p.11887-11902
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2513419613
source SpringerLink Journals
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Computer vision
Convolution
Data Structures and Information Theory
Datasets
Feature maps
Model testing
Multimedia Information Systems
Object recognition
Representations
Special Purpose and Application-Based Systems
title Exploiting interaction of fine and coarse features and attribute co-occurrence for person attribute recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20interaction%20of%20fine%20and%20coarse%20features%20and%20attribute%20co-occurrence%20for%20person%20attribute%20recognition&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Sun,%20Zhiyong&rft.date=2021-03-01&rft.volume=80&rft.issue=8&rft.spage=11887&rft.epage=11902&rft.pages=11887-11902&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10108-z&rft_dat=%3Cproquest_cross%3E2513419613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513419613&rft_id=info:pmid/&rfr_iscdi=true