Fluorescence sensing of microplastics on surfaces
Microplastics, nanoplastics and related products have been recently found in marine ecosystems worldwide, calling for new analytical methods for rapid detection and risk assessment. Fluorescence is a sensitive technique that when used with polarity probes can potentially detect low-polarity plastic...
Gespeichert in:
Veröffentlicht in: | Environmental chemistry letters 2021-04, Vol.19 (2), p.1797-1802 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1802 |
---|---|
container_issue | 2 |
container_start_page | 1797 |
container_title | Environmental chemistry letters |
container_volume | 19 |
creator | Costa, Camila Q. V. Cruz, Joana Martins, Jorge Teodósio, Maria Alexandra A. Jockusch, Steffen Ramamurthy, V. Da Silva, José P. |
description | Microplastics, nanoplastics and related products have been recently found in marine ecosystems worldwide, calling for new analytical methods for rapid detection and risk assessment. Fluorescence is a sensitive technique that when used with polarity probes can potentially detect low-polarity plastic particles in environments. Here, we evaluated the fluorescence technique to sense polystyrene microparticles directly on salt, silica and sand surfaces, using Nile Red and pyrene as polarity probes. Results show that all probes displayed fluorescence on silica and sand, whereas strong fluorescence quenching was observed on NaCl. Polystyrene particles increase the fluorescence intensity due to probe migration into their nonpolar microenvironment. In the presence of polystyrene, the spectra of Nile Red are shifted to shorter wavelengths, while the ratio of vibronic bands
I
1
/
I
3
of fluorescence of pyrene decreases to about 1. Pyrene showed similar sensitivity toward surface-modified carboxyl polystyrene particles. On NaCl, the emission of pyrene increases linearly with polystyrene content for concentrations from 0.5 to 20 µg/g. The detection limit of polystyrene microparticles on natural sea salt using pyrene as probe is about 0.2 µg/g, while on sand, the sensitivity is about one order of magnitude lower. Overall, although being of relatively low selectivity, the fluorescence technique can be used to determine a maximum content of plastic particles of few micrometers size with little sample preparation. Fluorescence, when used in conjunction with pyrene probe, allows for detection and quantification of microplastic particles in the sub-ppm range. |
doi_str_mv | 10.1007/s10311-020-01136-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513419558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513419558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-decda5a82d5a86675cb8f13c334c3da64d93d7ed3fb62b54cee867b4a93434863</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRt8PttJRlRRQKrEArPl2E6Vqk2KLxn49xiCYGO5u-G9d08fY9cgbkGI8o5AIAAXUnABgIaLE7YAA4KjMXD6e2s8ZxdEOyGkLKVcMFjvpyFF8rH3saDYU9dvi6EtDp1Pw3HvaOw8FUNf0JRa5yNdsrPW7Sle_ewle1s_vK6e-Obl8Xl1v-EeoR55iD447SoZ8jCm1L6pWkCPqDwGZ1SoMZQxYNsY2WjlY6xM2ShXo0JVGVyymzn3mIb3KdJod8OU-vzSSg2ooNa6yio5q3JbohRbe0zdwaUPC8J-obEzGpvR2G80VmQTzibK4n4b01_0P65PIbBmEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513419558</pqid></control><display><type>article</type><title>Fluorescence sensing of microplastics on surfaces</title><source>SpringerLink Journals</source><creator>Costa, Camila Q. V. ; Cruz, Joana ; Martins, Jorge ; Teodósio, Maria Alexandra A. ; Jockusch, Steffen ; Ramamurthy, V. ; Da Silva, José P.</creator><creatorcontrib>Costa, Camila Q. V. ; Cruz, Joana ; Martins, Jorge ; Teodósio, Maria Alexandra A. ; Jockusch, Steffen ; Ramamurthy, V. ; Da Silva, José P.</creatorcontrib><description>Microplastics, nanoplastics and related products have been recently found in marine ecosystems worldwide, calling for new analytical methods for rapid detection and risk assessment. Fluorescence is a sensitive technique that when used with polarity probes can potentially detect low-polarity plastic particles in environments. Here, we evaluated the fluorescence technique to sense polystyrene microparticles directly on salt, silica and sand surfaces, using Nile Red and pyrene as polarity probes. Results show that all probes displayed fluorescence on silica and sand, whereas strong fluorescence quenching was observed on NaCl. Polystyrene particles increase the fluorescence intensity due to probe migration into their nonpolar microenvironment. In the presence of polystyrene, the spectra of Nile Red are shifted to shorter wavelengths, while the ratio of vibronic bands
I
1
/
I
3
of fluorescence of pyrene decreases to about 1. Pyrene showed similar sensitivity toward surface-modified carboxyl polystyrene particles. On NaCl, the emission of pyrene increases linearly with polystyrene content for concentrations from 0.5 to 20 µg/g. The detection limit of polystyrene microparticles on natural sea salt using pyrene as probe is about 0.2 µg/g, while on sand, the sensitivity is about one order of magnitude lower. Overall, although being of relatively low selectivity, the fluorescence technique can be used to determine a maximum content of plastic particles of few micrometers size with little sample preparation. Fluorescence, when used in conjunction with pyrene probe, allows for detection and quantification of microplastic particles in the sub-ppm range.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-020-01136-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Detection ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Fluorescence ; Fluorescent indicators ; Geochemistry ; Marine ecosystems ; Micrometers ; Microparticles ; Microplastics ; Original Paper ; Particle size ; Polarity ; Pollution ; Polystyrene ; Polystyrene resins ; Probes ; Pyrene ; Risk assessment ; Salt ; Sample preparation ; Sand ; Sand & gravel ; Selectivity ; Sensitivity ; Sensors ; Silica ; Silicon dioxide ; Sodium chloride ; Solvents ; Wavelengths</subject><ispartof>Environmental chemistry letters, 2021-04, Vol.19 (2), p.1797-1802</ispartof><rights>Springer Nature Switzerland AG 2021</rights><rights>Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-decda5a82d5a86675cb8f13c334c3da64d93d7ed3fb62b54cee867b4a93434863</citedby><cites>FETCH-LOGICAL-c319t-decda5a82d5a86675cb8f13c334c3da64d93d7ed3fb62b54cee867b4a93434863</cites><orcidid>0000-0002-6458-7328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10311-020-01136-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10311-020-01136-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Costa, Camila Q. V.</creatorcontrib><creatorcontrib>Cruz, Joana</creatorcontrib><creatorcontrib>Martins, Jorge</creatorcontrib><creatorcontrib>Teodósio, Maria Alexandra A.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Ramamurthy, V.</creatorcontrib><creatorcontrib>Da Silva, José P.</creatorcontrib><title>Fluorescence sensing of microplastics on surfaces</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>Microplastics, nanoplastics and related products have been recently found in marine ecosystems worldwide, calling for new analytical methods for rapid detection and risk assessment. Fluorescence is a sensitive technique that when used with polarity probes can potentially detect low-polarity plastic particles in environments. Here, we evaluated the fluorescence technique to sense polystyrene microparticles directly on salt, silica and sand surfaces, using Nile Red and pyrene as polarity probes. Results show that all probes displayed fluorescence on silica and sand, whereas strong fluorescence quenching was observed on NaCl. Polystyrene particles increase the fluorescence intensity due to probe migration into their nonpolar microenvironment. In the presence of polystyrene, the spectra of Nile Red are shifted to shorter wavelengths, while the ratio of vibronic bands
I
1
/
I
3
of fluorescence of pyrene decreases to about 1. Pyrene showed similar sensitivity toward surface-modified carboxyl polystyrene particles. On NaCl, the emission of pyrene increases linearly with polystyrene content for concentrations from 0.5 to 20 µg/g. The detection limit of polystyrene microparticles on natural sea salt using pyrene as probe is about 0.2 µg/g, while on sand, the sensitivity is about one order of magnitude lower. Overall, although being of relatively low selectivity, the fluorescence technique can be used to determine a maximum content of plastic particles of few micrometers size with little sample preparation. Fluorescence, when used in conjunction with pyrene probe, allows for detection and quantification of microplastic particles in the sub-ppm range.</description><subject>Analytical Chemistry</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Geochemistry</subject><subject>Marine ecosystems</subject><subject>Micrometers</subject><subject>Microparticles</subject><subject>Microplastics</subject><subject>Original Paper</subject><subject>Particle size</subject><subject>Polarity</subject><subject>Pollution</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Probes</subject><subject>Pyrene</subject><subject>Risk assessment</subject><subject>Salt</subject><subject>Sample preparation</subject><subject>Sand</subject><subject>Sand & gravel</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sodium chloride</subject><subject>Solvents</subject><subject>Wavelengths</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRt8PttJRlRRQKrEArPl2E6Vqk2KLxn49xiCYGO5u-G9d08fY9cgbkGI8o5AIAAXUnABgIaLE7YAA4KjMXD6e2s8ZxdEOyGkLKVcMFjvpyFF8rH3saDYU9dvi6EtDp1Pw3HvaOw8FUNf0JRa5yNdsrPW7Sle_ewle1s_vK6e-Obl8Xl1v-EeoR55iD447SoZ8jCm1L6pWkCPqDwGZ1SoMZQxYNsY2WjlY6xM2ShXo0JVGVyymzn3mIb3KdJod8OU-vzSSg2ooNa6yio5q3JbohRbe0zdwaUPC8J-obEzGpvR2G80VmQTzibK4n4b01_0P65PIbBmEA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Costa, Camila Q. V.</creator><creator>Cruz, Joana</creator><creator>Martins, Jorge</creator><creator>Teodósio, Maria Alexandra A.</creator><creator>Jockusch, Steffen</creator><creator>Ramamurthy, V.</creator><creator>Da Silva, José P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6458-7328</orcidid></search><sort><creationdate>20210401</creationdate><title>Fluorescence sensing of microplastics on surfaces</title><author>Costa, Camila Q. V. ; Cruz, Joana ; Martins, Jorge ; Teodósio, Maria Alexandra A. ; Jockusch, Steffen ; Ramamurthy, V. ; Da Silva, José P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-decda5a82d5a86675cb8f13c334c3da64d93d7ed3fb62b54cee867b4a93434863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical Chemistry</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Geochemistry</topic><topic>Marine ecosystems</topic><topic>Micrometers</topic><topic>Microparticles</topic><topic>Microplastics</topic><topic>Original Paper</topic><topic>Particle size</topic><topic>Polarity</topic><topic>Pollution</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Probes</topic><topic>Pyrene</topic><topic>Risk assessment</topic><topic>Salt</topic><topic>Sample preparation</topic><topic>Sand</topic><topic>Sand & gravel</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sodium chloride</topic><topic>Solvents</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Camila Q. V.</creatorcontrib><creatorcontrib>Cruz, Joana</creatorcontrib><creatorcontrib>Martins, Jorge</creatorcontrib><creatorcontrib>Teodósio, Maria Alexandra A.</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Ramamurthy, V.</creatorcontrib><creatorcontrib>Da Silva, José P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Camila Q. V.</au><au>Cruz, Joana</au><au>Martins, Jorge</au><au>Teodósio, Maria Alexandra A.</au><au>Jockusch, Steffen</au><au>Ramamurthy, V.</au><au>Da Silva, José P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescence sensing of microplastics on surfaces</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><spage>1797</spage><epage>1802</epage><pages>1797-1802</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>Microplastics, nanoplastics and related products have been recently found in marine ecosystems worldwide, calling for new analytical methods for rapid detection and risk assessment. Fluorescence is a sensitive technique that when used with polarity probes can potentially detect low-polarity plastic particles in environments. Here, we evaluated the fluorescence technique to sense polystyrene microparticles directly on salt, silica and sand surfaces, using Nile Red and pyrene as polarity probes. Results show that all probes displayed fluorescence on silica and sand, whereas strong fluorescence quenching was observed on NaCl. Polystyrene particles increase the fluorescence intensity due to probe migration into their nonpolar microenvironment. In the presence of polystyrene, the spectra of Nile Red are shifted to shorter wavelengths, while the ratio of vibronic bands
I
1
/
I
3
of fluorescence of pyrene decreases to about 1. Pyrene showed similar sensitivity toward surface-modified carboxyl polystyrene particles. On NaCl, the emission of pyrene increases linearly with polystyrene content for concentrations from 0.5 to 20 µg/g. The detection limit of polystyrene microparticles on natural sea salt using pyrene as probe is about 0.2 µg/g, while on sand, the sensitivity is about one order of magnitude lower. Overall, although being of relatively low selectivity, the fluorescence technique can be used to determine a maximum content of plastic particles of few micrometers size with little sample preparation. Fluorescence, when used in conjunction with pyrene probe, allows for detection and quantification of microplastic particles in the sub-ppm range.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-020-01136-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6458-7328</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-3653 |
ispartof | Environmental chemistry letters, 2021-04, Vol.19 (2), p.1797-1802 |
issn | 1610-3653 1610-3661 |
language | eng |
recordid | cdi_proquest_journals_2513419558 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Detection Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Fluorescence Fluorescent indicators Geochemistry Marine ecosystems Micrometers Microparticles Microplastics Original Paper Particle size Polarity Pollution Polystyrene Polystyrene resins Probes Pyrene Risk assessment Salt Sample preparation Sand Sand & gravel Selectivity Sensitivity Sensors Silica Silicon dioxide Sodium chloride Solvents Wavelengths |
title | Fluorescence sensing of microplastics on surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescence%20sensing%20of%20microplastics%20on%20surfaces&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Costa,%20Camila%20Q.%20V.&rft.date=2021-04-01&rft.volume=19&rft.issue=2&rft.spage=1797&rft.epage=1802&rft.pages=1797-1802&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-020-01136-0&rft_dat=%3Cproquest_cross%3E2513419558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513419558&rft_id=info:pmid/&rfr_iscdi=true |