A sample-level DCNN for music auto-tagging
Deep convolutional neural networks (DCNNs) has been widely used in music auto-tagging which is a multi-label classification task that predicts tags of audio signals. This paper presents a sample-level DCNN for music auto-tagging. The proposed DCNN highlights two components: strided convolutional lay...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-03, Vol.80 (8), p.11459-11469 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11469 |
---|---|
container_issue | 8 |
container_start_page | 11459 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Yu, Yong-bin Qi, Min-hui Tang, Yi-fan Deng, Quan-xin Mai, Feng Zhaxi, Nima |
description | Deep convolutional neural networks (DCNNs) has been widely used in music auto-tagging which is a multi-label classification task that predicts tags of audio signals. This paper presents a sample-level DCNN for music auto-tagging. The proposed DCNN highlights two components: strided convolutional layer for extracting local feature and reducing temporal dimension, and residual block from WaveNet for preserving input resolution and extracting more complex features. In order to further improve performance, squeeze-and-excitation (SE) block is introduced to the residual block. Under the evaluation metric of Area Under Receiver Operating Characteristic Curve (AUC-ROC) score, experiment results on MagnaTagATune (MTAT) dataset show that the two proposed models achieve 91.47% and 92.76% respectively. Furthermore, our proposed models have slightly surpass the state-of-the-art model SampleCNN with SE block. |
doi_str_mv | 10.1007/s11042-020-10330-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513419510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513419510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9a86667b1ff59c0723766b2687eb326a4ba2e0b889ecbc10476514cd6d0d75c13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouFa_gKeCNyE6kzRJc1zWv7CsFz2HNE3LLu12TVrBb2-0gjdPM4f33sz7EXKJcIMA6jYiQsEoMKAInAPVR2SBQnGqFMPjtPMSqBKAp-Qsxh0ASsGKBble5tH2h87Tzn_4Lr9bbTZ5M4S8n-LW5XYaBzratt3u23Ny0tgu-ovfmZG3h_vX1RNdvzw-r5Zr6piCkWpbSilVhU0jtAPFuJKyYrJUvuJM2qKyzENVltq7yqW3lRRYuFrWUCvhkGfkas49hOF98nE0u2EK-3TSMIG8QC1Sx4ywWeXCEGPwjTmEbW_Dp0Ew30zMzMQkJuaHidHJxGdTTOJ968Nf9D-uL4GEYR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513419510</pqid></control><display><type>article</type><title>A sample-level DCNN for music auto-tagging</title><source>SpringerLink Journals</source><creator>Yu, Yong-bin ; Qi, Min-hui ; Tang, Yi-fan ; Deng, Quan-xin ; Mai, Feng ; Zhaxi, Nima</creator><creatorcontrib>Yu, Yong-bin ; Qi, Min-hui ; Tang, Yi-fan ; Deng, Quan-xin ; Mai, Feng ; Zhaxi, Nima</creatorcontrib><description>Deep convolutional neural networks (DCNNs) has been widely used in music auto-tagging which is a multi-label classification task that predicts tags of audio signals. This paper presents a sample-level DCNN for music auto-tagging. The proposed DCNN highlights two components: strided convolutional layer for extracting local feature and reducing temporal dimension, and residual block from WaveNet for preserving input resolution and extracting more complex features. In order to further improve performance, squeeze-and-excitation (SE) block is introduced to the residual block. Under the evaluation metric of Area Under Receiver Operating Characteristic Curve (AUC-ROC) score, experiment results on MagnaTagATune (MTAT) dataset show that the two proposed models achieve 91.47% and 92.76% respectively. Furthermore, our proposed models have slightly surpass the state-of-the-art model SampleCNN with SE block.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10330-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Audio signals ; Classification ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Feature extraction ; Marking ; Model testing ; Multimedia ; Multimedia Information Systems ; Music ; Neural networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-03, Vol.80 (8), p.11459-11469</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9a86667b1ff59c0723766b2687eb326a4ba2e0b889ecbc10476514cd6d0d75c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10330-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10330-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yu, Yong-bin</creatorcontrib><creatorcontrib>Qi, Min-hui</creatorcontrib><creatorcontrib>Tang, Yi-fan</creatorcontrib><creatorcontrib>Deng, Quan-xin</creatorcontrib><creatorcontrib>Mai, Feng</creatorcontrib><creatorcontrib>Zhaxi, Nima</creatorcontrib><title>A sample-level DCNN for music auto-tagging</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Deep convolutional neural networks (DCNNs) has been widely used in music auto-tagging which is a multi-label classification task that predicts tags of audio signals. This paper presents a sample-level DCNN for music auto-tagging. The proposed DCNN highlights two components: strided convolutional layer for extracting local feature and reducing temporal dimension, and residual block from WaveNet for preserving input resolution and extracting more complex features. In order to further improve performance, squeeze-and-excitation (SE) block is introduced to the residual block. Under the evaluation metric of Area Under Receiver Operating Characteristic Curve (AUC-ROC) score, experiment results on MagnaTagATune (MTAT) dataset show that the two proposed models achieve 91.47% and 92.76% respectively. Furthermore, our proposed models have slightly surpass the state-of-the-art model SampleCNN with SE block.</description><subject>Artificial neural networks</subject><subject>Audio signals</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Marking</subject><subject>Model testing</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Music</subject><subject>Neural networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQxYMouFa_gKeCNyE6kzRJc1zWv7CsFz2HNE3LLu12TVrBb2-0gjdPM4f33sz7EXKJcIMA6jYiQsEoMKAInAPVR2SBQnGqFMPjtPMSqBKAp-Qsxh0ASsGKBble5tH2h87Tzn_4Lr9bbTZ5M4S8n-LW5XYaBzratt3u23Ny0tgu-ovfmZG3h_vX1RNdvzw-r5Zr6piCkWpbSilVhU0jtAPFuJKyYrJUvuJM2qKyzENVltq7yqW3lRRYuFrWUCvhkGfkas49hOF98nE0u2EK-3TSMIG8QC1Sx4ywWeXCEGPwjTmEbW_Dp0Ew30zMzMQkJuaHidHJxGdTTOJ968Nf9D-uL4GEYR0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yu, Yong-bin</creator><creator>Qi, Min-hui</creator><creator>Tang, Yi-fan</creator><creator>Deng, Quan-xin</creator><creator>Mai, Feng</creator><creator>Zhaxi, Nima</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20210301</creationdate><title>A sample-level DCNN for music auto-tagging</title><author>Yu, Yong-bin ; Qi, Min-hui ; Tang, Yi-fan ; Deng, Quan-xin ; Mai, Feng ; Zhaxi, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9a86667b1ff59c0723766b2687eb326a4ba2e0b889ecbc10476514cd6d0d75c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Audio signals</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Marking</topic><topic>Model testing</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Music</topic><topic>Neural networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yong-bin</creatorcontrib><creatorcontrib>Qi, Min-hui</creatorcontrib><creatorcontrib>Tang, Yi-fan</creatorcontrib><creatorcontrib>Deng, Quan-xin</creatorcontrib><creatorcontrib>Mai, Feng</creatorcontrib><creatorcontrib>Zhaxi, Nima</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yong-bin</au><au>Qi, Min-hui</au><au>Tang, Yi-fan</au><au>Deng, Quan-xin</au><au>Mai, Feng</au><au>Zhaxi, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sample-level DCNN for music auto-tagging</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>80</volume><issue>8</issue><spage>11459</spage><epage>11469</epage><pages>11459-11469</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Deep convolutional neural networks (DCNNs) has been widely used in music auto-tagging which is a multi-label classification task that predicts tags of audio signals. This paper presents a sample-level DCNN for music auto-tagging. The proposed DCNN highlights two components: strided convolutional layer for extracting local feature and reducing temporal dimension, and residual block from WaveNet for preserving input resolution and extracting more complex features. In order to further improve performance, squeeze-and-excitation (SE) block is introduced to the residual block. Under the evaluation metric of Area Under Receiver Operating Characteristic Curve (AUC-ROC) score, experiment results on MagnaTagATune (MTAT) dataset show that the two proposed models achieve 91.47% and 92.76% respectively. Furthermore, our proposed models have slightly surpass the state-of-the-art model SampleCNN with SE block.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10330-9</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-03, Vol.80 (8), p.11459-11469 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2513419510 |
source | SpringerLink Journals |
subjects | Artificial neural networks Audio signals Classification Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Feature extraction Marking Model testing Multimedia Multimedia Information Systems Music Neural networks Special Purpose and Application-Based Systems |
title | A sample-level DCNN for music auto-tagging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sample-level%20DCNN%20for%20music%20auto-tagging&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yu,%20Yong-bin&rft.date=2021-03-01&rft.volume=80&rft.issue=8&rft.spage=11459&rft.epage=11469&rft.pages=11459-11469&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10330-9&rft_dat=%3Cproquest_cross%3E2513419510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513419510&rft_id=info:pmid/&rfr_iscdi=true |