DT-FNN based effective hybrid classification scheme for twitter sentiment analysis
Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use th...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2021-03, Vol.80 (8), p.11443-11458 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11458 |
---|---|
container_issue | 8 |
container_start_page | 11443 |
container_title | Multimedia tools and applications |
container_volume | 80 |
creator | Naz, Huma Ahuja, Sachin Kumar, Deepak Rishu |
description | Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services & products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%. |
doi_str_mv | 10.1007/s11042-020-10190-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513414782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513414782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhhdRsFZfwFPAc3Qm2TS7R6lWhVJB6jlksxOb0u7WZKv07V1dwZuXmTl8_8_wZdklwjUC6JuECLngIIAjYAlcHmUjVFpyrQUe97csgGsFeJqdpbQGwIkS-Sh7uVvy2WLBKpuoZuQ9uS58EFsdqhhq5jY2peCDs11oG5bcirbEfBtZ9xm6jiJL1HRh2w9mG7s5pJDOsxNvN4kufvc4e53dL6ePfP788DS9nXMnsey4yJVU4IQsXV2XBVmtJyTLAkpAT1ZKIpnnTqEuSpUXqvYKQfiJrmRV69LLcXY19O5i-76n1Jl1u4_9E8kIhTLHXBeip8RAudimFMmbXQxbGw8GwXy7M4M707szP-6M7ENyCKUebt4o_lX_k_oCXvZw0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513414782</pqid></control><display><type>article</type><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><source>SpringerLink Journals</source><creator>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</creator><creatorcontrib>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</creatorcontrib><description>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services & products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10190-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Appraisals ; Autoregressive models ; Classification ; Computer Communication Networks ; Computer Science ; Data mining ; Data Structures and Information Theory ; Decision analysis ; Decision trees ; Feature extraction ; Independent component analysis ; Multimedia Information Systems ; Neural networks ; Sentiment analysis ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-03, Vol.80 (8), p.11443-11458</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</citedby><cites>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</cites><orcidid>0000-0003-4393-5378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10190-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10190-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Naz, Huma</creatorcontrib><creatorcontrib>Ahuja, Sachin</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Rishu</creatorcontrib><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services & products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</description><subject>Algorithms</subject><subject>Appraisals</subject><subject>Autoregressive models</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Independent component analysis</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFKAzEQhhdRsFZfwFPAc3Qm2TS7R6lWhVJB6jlksxOb0u7WZKv07V1dwZuXmTl8_8_wZdklwjUC6JuECLngIIAjYAlcHmUjVFpyrQUe97csgGsFeJqdpbQGwIkS-Sh7uVvy2WLBKpuoZuQ9uS58EFsdqhhq5jY2peCDs11oG5bcirbEfBtZ9xm6jiJL1HRh2w9mG7s5pJDOsxNvN4kufvc4e53dL6ePfP788DS9nXMnsey4yJVU4IQsXV2XBVmtJyTLAkpAT1ZKIpnnTqEuSpUXqvYKQfiJrmRV69LLcXY19O5i-76n1Jl1u4_9E8kIhTLHXBeip8RAudimFMmbXQxbGw8GwXy7M4M707szP-6M7ENyCKUebt4o_lX_k_oCXvZw0g</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Naz, Huma</creator><creator>Ahuja, Sachin</creator><creator>Kumar, Deepak</creator><creator>Rishu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4393-5378</orcidid></search><sort><creationdate>20210301</creationdate><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><author>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Appraisals</topic><topic>Autoregressive models</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Independent component analysis</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naz, Huma</creatorcontrib><creatorcontrib>Ahuja, Sachin</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Rishu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naz, Huma</au><au>Ahuja, Sachin</au><au>Kumar, Deepak</au><au>Rishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>80</volume><issue>8</issue><spage>11443</spage><epage>11458</epage><pages>11443-11458</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services & products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10190-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4393-5378</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2021-03, Vol.80 (8), p.11443-11458 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2513414782 |
source | SpringerLink Journals |
subjects | Algorithms Appraisals Autoregressive models Classification Computer Communication Networks Computer Science Data mining Data Structures and Information Theory Decision analysis Decision trees Feature extraction Independent component analysis Multimedia Information Systems Neural networks Sentiment analysis Special Purpose and Application-Based Systems |
title | DT-FNN based effective hybrid classification scheme for twitter sentiment analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DT-FNN%20based%20effective%20hybrid%20classification%20scheme%20for%20twitter%20sentiment%20analysis&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Naz,%20Huma&rft.date=2021-03-01&rft.volume=80&rft.issue=8&rft.spage=11443&rft.epage=11458&rft.pages=11443-11458&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10190-3&rft_dat=%3Cproquest_cross%3E2513414782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513414782&rft_id=info:pmid/&rfr_iscdi=true |