DT-FNN based effective hybrid classification scheme for twitter sentiment analysis

Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2021-03, Vol.80 (8), p.11443-11458
Hauptverfasser: Naz, Huma, Ahuja, Sachin, Kumar, Deepak, Rishu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11458
container_issue 8
container_start_page 11443
container_title Multimedia tools and applications
container_volume 80
creator Naz, Huma
Ahuja, Sachin
Kumar, Deepak
Rishu
description Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services & products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.
doi_str_mv 10.1007/s11042-020-10190-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513414782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513414782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhhdRsFZfwFPAc3Qm2TS7R6lWhVJB6jlksxOb0u7WZKv07V1dwZuXmTl8_8_wZdklwjUC6JuECLngIIAjYAlcHmUjVFpyrQUe97csgGsFeJqdpbQGwIkS-Sh7uVvy2WLBKpuoZuQ9uS58EFsdqhhq5jY2peCDs11oG5bcirbEfBtZ9xm6jiJL1HRh2w9mG7s5pJDOsxNvN4kufvc4e53dL6ePfP788DS9nXMnsey4yJVU4IQsXV2XBVmtJyTLAkpAT1ZKIpnnTqEuSpUXqvYKQfiJrmRV69LLcXY19O5i-76n1Jl1u4_9E8kIhTLHXBeip8RAudimFMmbXQxbGw8GwXy7M4M707szP-6M7ENyCKUebt4o_lX_k_oCXvZw0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513414782</pqid></control><display><type>article</type><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><source>SpringerLink Journals</source><creator>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</creator><creatorcontrib>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</creatorcontrib><description>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services &amp; products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-10190-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Appraisals ; Autoregressive models ; Classification ; Computer Communication Networks ; Computer Science ; Data mining ; Data Structures and Information Theory ; Decision analysis ; Decision trees ; Feature extraction ; Independent component analysis ; Multimedia Information Systems ; Neural networks ; Sentiment analysis ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2021-03, Vol.80 (8), p.11443-11458</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</citedby><cites>FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</cites><orcidid>0000-0003-4393-5378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-10190-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-10190-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Naz, Huma</creatorcontrib><creatorcontrib>Ahuja, Sachin</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Rishu</creatorcontrib><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services &amp; products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</description><subject>Algorithms</subject><subject>Appraisals</subject><subject>Autoregressive models</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Independent component analysis</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFKAzEQhhdRsFZfwFPAc3Qm2TS7R6lWhVJB6jlksxOb0u7WZKv07V1dwZuXmTl8_8_wZdklwjUC6JuECLngIIAjYAlcHmUjVFpyrQUe97csgGsFeJqdpbQGwIkS-Sh7uVvy2WLBKpuoZuQ9uS58EFsdqhhq5jY2peCDs11oG5bcirbEfBtZ9xm6jiJL1HRh2w9mG7s5pJDOsxNvN4kufvc4e53dL6ePfP788DS9nXMnsey4yJVU4IQsXV2XBVmtJyTLAkpAT1ZKIpnnTqEuSpUXqvYKQfiJrmRV69LLcXY19O5i-76n1Jl1u4_9E8kIhTLHXBeip8RAudimFMmbXQxbGw8GwXy7M4M707szP-6M7ENyCKUebt4o_lX_k_oCXvZw0g</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Naz, Huma</creator><creator>Ahuja, Sachin</creator><creator>Kumar, Deepak</creator><creator>Rishu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4393-5378</orcidid></search><sort><creationdate>20210301</creationdate><title>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</title><author>Naz, Huma ; Ahuja, Sachin ; Kumar, Deepak ; Rishu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-245350c239cdd98ea776e3980901fea33ee344c517895485df5102f67b3bd79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Appraisals</topic><topic>Autoregressive models</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Independent component analysis</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naz, Huma</creatorcontrib><creatorcontrib>Ahuja, Sachin</creatorcontrib><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Rishu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naz, Huma</au><au>Ahuja, Sachin</au><au>Kumar, Deepak</au><au>Rishu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DT-FNN based effective hybrid classification scheme for twitter sentiment analysis</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>80</volume><issue>8</issue><spage>11443</spage><epage>11458</epage><pages>11443-11458</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Sentiment analysis refers to the interpretation and computational study of emotions, opinions and appraisals within the text data using text analysis methods. A basic aim of sentiment analysis is to categorize the sentiment polarity of the sentences, document or aspects. Product manufacturers use the knowledge from sentiment analysis for improving their services &amp; products. Hence, there is an atrocious need of an efficient technique that can accurately identify the sentiment polarity of the content. The supervised classification algorithm has been proved favourable for most of the sentiment analysis task and is widely used in opinion mining. This study presents a novel method for sentiment analysis by combining two supervised classification algorithms viz. Decision Tree (DT) and Feed Forward Neural Network (FNN). Pre-processing of data is carried out by using Independent Component Analysis (ICA) and Windowed Multivariate Autoregressive Model (WMAR) is introduced for extraction of potential features. Then highest scores are extracted using Improved Bat Algorithm (IBA) technique and finally, the experimental results are compared with existing algorithms i.e. ID3, J48 and Random forest classifier. The proposed method significantly outperforms the existing sentiment classification methods with accuracy of 97.84%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-10190-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4393-5378</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2021-03, Vol.80 (8), p.11443-11458
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2513414782
source SpringerLink Journals
subjects Algorithms
Appraisals
Autoregressive models
Classification
Computer Communication Networks
Computer Science
Data mining
Data Structures and Information Theory
Decision analysis
Decision trees
Feature extraction
Independent component analysis
Multimedia Information Systems
Neural networks
Sentiment analysis
Special Purpose and Application-Based Systems
title DT-FNN based effective hybrid classification scheme for twitter sentiment analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DT-FNN%20based%20effective%20hybrid%20classification%20scheme%20for%20twitter%20sentiment%20analysis&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Naz,%20Huma&rft.date=2021-03-01&rft.volume=80&rft.issue=8&rft.spage=11443&rft.epage=11458&rft.pages=11443-11458&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-10190-3&rft_dat=%3Cproquest_cross%3E2513414782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513414782&rft_id=info:pmid/&rfr_iscdi=true