Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators
Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two d...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-07, Vol.6 (3), p.4774-4781 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4781 |
---|---|
container_issue | 3 |
container_start_page | 4774 |
container_title | IEEE robotics and automation letters |
container_volume | 6 |
creator | Doroudchi, Azadeh Khodambashi, Roozbeh Sharifzadeh, Mohammad Li, Dongting Berman, Spring Aukes, Daniel M. |
description | Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust H_{\infty }-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the H_\infty-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the H_\infty-optimal controller can be used to track different trajectories with an NMAE below 15\%, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed H_\infty-optimal trajectory-tracking controller to each manipulator in a decoupled manner. |
doi_str_mv | 10.1109/LRA.2021.3067622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2513396770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382080</ieee_id><sourcerecordid>2513396770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpJtsjqVaW2gpSMVjyKbZmrpuapI99N-7S4t4mmF438zwELonMCYE5NPqbTqmQMmYARec0is0oEyIjAnOr__1t2gU4wEASE4Fk_kALbdBmy_X7PHMNyn4GvsKa7x2jdOpDRbT7Hkzx2vduGNb6-QD_nDpEy9Ou-D3tsZTk9p-HO_QTaXraEeXOkTv85ftbJGtNq_L2XSVGSpJyjhQKijVhGhegbS8lJwz3v0Nk5IVtso5kGJidLkrjNGWi50uec6ILcREEsuG6PG89xj8T2tjUgffhqY7qWhOGJNcCOgoOFMm-BiDrdQxuG8dToqA6p2pzpnqnamLsy7ycI44a-0fLllBoQD2C24wZV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513396770</pqid></control><display><type>article</type><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</creator><creatorcontrib>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</creatorcontrib><description><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3067622</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; and learning for soft robots ; Cameras ; control ; Controllers ; Degrees of freedom ; Disturbances ; Error analysis ; Heating systems ; Hydrogels ; Linear matrix inequalities ; Manipulator dynamics ; Manipulators ; Mathematical analysis ; Model testing ; Modeling ; Output feedback ; Robot arms ; Robust control ; soft robot applications ; soft robot materials and design ; soft sensors and actuators ; Stability ; State space models ; State-space methods ; Tracking control ; Trajectory ; Trajectory control ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4774-4781</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</citedby><cites>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</cites><orcidid>0000-0001-5657-3121 ; 0000-0001-9239-0509 ; 0000-0002-8410-3554 ; 0000-0002-3360-2978 ; 0000-0002-7746-2401 ; 0000-0003-4071-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doroudchi, Azadeh</creatorcontrib><creatorcontrib>Khodambashi, Roozbeh</creatorcontrib><creatorcontrib>Sharifzadeh, Mohammad</creatorcontrib><creatorcontrib>Li, Dongting</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><creatorcontrib>Aukes, Daniel M.</creatorcontrib><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></description><subject>Actuators</subject><subject>and learning for soft robots</subject><subject>Cameras</subject><subject>control</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Disturbances</subject><subject>Error analysis</subject><subject>Heating systems</subject><subject>Hydrogels</subject><subject>Linear matrix inequalities</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mathematical analysis</subject><subject>Model testing</subject><subject>Modeling</subject><subject>Output feedback</subject><subject>Robot arms</subject><subject>Robust control</subject><subject>soft robot applications</subject><subject>soft robot materials and design</subject><subject>soft sensors and actuators</subject><subject>Stability</subject><subject>State space models</subject><subject>State-space methods</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpJtsjqVaW2gpSMVjyKbZmrpuapI99N-7S4t4mmF438zwELonMCYE5NPqbTqmQMmYARec0is0oEyIjAnOr__1t2gU4wEASE4Fk_kALbdBmy_X7PHMNyn4GvsKa7x2jdOpDRbT7Hkzx2vduGNb6-QD_nDpEy9Ou-D3tsZTk9p-HO_QTaXraEeXOkTv85ftbJGtNq_L2XSVGSpJyjhQKijVhGhegbS8lJwz3v0Nk5IVtso5kGJidLkrjNGWi50uec6ILcREEsuG6PG89xj8T2tjUgffhqY7qWhOGJNcCOgoOFMm-BiDrdQxuG8dToqA6p2pzpnqnamLsy7ycI44a-0fLllBoQD2C24wZV4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Doroudchi, Azadeh</creator><creator>Khodambashi, Roozbeh</creator><creator>Sharifzadeh, Mohammad</creator><creator>Li, Dongting</creator><creator>Berman, Spring</creator><creator>Aukes, Daniel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5657-3121</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-8410-3554</orcidid><orcidid>https://orcid.org/0000-0002-3360-2978</orcidid><orcidid>https://orcid.org/0000-0002-7746-2401</orcidid><orcidid>https://orcid.org/0000-0003-4071-9629</orcidid></search><sort><creationdate>20210701</creationdate><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><author>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>and learning for soft robots</topic><topic>Cameras</topic><topic>control</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Disturbances</topic><topic>Error analysis</topic><topic>Heating systems</topic><topic>Hydrogels</topic><topic>Linear matrix inequalities</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mathematical analysis</topic><topic>Model testing</topic><topic>Modeling</topic><topic>Output feedback</topic><topic>Robot arms</topic><topic>Robust control</topic><topic>soft robot applications</topic><topic>soft robot materials and design</topic><topic>soft sensors and actuators</topic><topic>Stability</topic><topic>State space models</topic><topic>State-space methods</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doroudchi, Azadeh</creatorcontrib><creatorcontrib>Khodambashi, Roozbeh</creatorcontrib><creatorcontrib>Sharifzadeh, Mohammad</creatorcontrib><creatorcontrib>Li, Dongting</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><creatorcontrib>Aukes, Daniel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doroudchi, Azadeh</au><au>Khodambashi, Roozbeh</au><au>Sharifzadeh, Mohammad</au><au>Li, Dongting</au><au>Berman, Spring</au><au>Aukes, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>4774</spage><epage>4781</epage><pages>4774-4781</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3067622</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5657-3121</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-8410-3554</orcidid><orcidid>https://orcid.org/0000-0002-3360-2978</orcidid><orcidid>https://orcid.org/0000-0002-7746-2401</orcidid><orcidid>https://orcid.org/0000-0003-4071-9629</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4774-4781 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2513396770 |
source | IEEE Electronic Library (IEL) |
subjects | Actuators and learning for soft robots Cameras control Controllers Degrees of freedom Disturbances Error analysis Heating systems Hydrogels Linear matrix inequalities Manipulator dynamics Manipulators Mathematical analysis Model testing Modeling Output feedback Robot arms Robust control soft robot applications soft robot materials and design soft sensors and actuators Stability State space models State-space methods Tracking control Trajectory Trajectory control Trajectory optimization |
title | Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Control%20of%20a%20Miniature%202-DOF%20Manipulator%20With%20Hydrogel%20Actuators&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Doroudchi,%20Azadeh&rft.date=2021-07-01&rft.volume=6&rft.issue=3&rft.spage=4774&rft.epage=4781&rft.pages=4774-4781&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3067622&rft_dat=%3Cproquest_RIE%3E2513396770%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513396770&rft_id=info:pmid/&rft_ieee_id=9382080&rfr_iscdi=true |