Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators

Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-07, Vol.6 (3), p.4774-4781
Hauptverfasser: Doroudchi, Azadeh, Khodambashi, Roozbeh, Sharifzadeh, Mohammad, Li, Dongting, Berman, Spring, Aukes, Daniel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4781
container_issue 3
container_start_page 4774
container_title IEEE robotics and automation letters
container_volume 6
creator Doroudchi, Azadeh
Khodambashi, Roozbeh
Sharifzadeh, Mohammad
Li, Dongting
Berman, Spring
Aukes, Daniel M.
description Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust H_{\infty }-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the H_\infty-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the H_\infty-optimal controller can be used to track different trajectories with an NMAE below 15\%, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed H_\infty-optimal trajectory-tracking controller to each manipulator in a decoupled manner.
doi_str_mv 10.1109/LRA.2021.3067622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2513396770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382080</ieee_id><sourcerecordid>2513396770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpJtsjqVaW2gpSMVjyKbZmrpuapI99N-7S4t4mmF438zwELonMCYE5NPqbTqmQMmYARec0is0oEyIjAnOr__1t2gU4wEASE4Fk_kALbdBmy_X7PHMNyn4GvsKa7x2jdOpDRbT7Hkzx2vduGNb6-QD_nDpEy9Ou-D3tsZTk9p-HO_QTaXraEeXOkTv85ftbJGtNq_L2XSVGSpJyjhQKijVhGhegbS8lJwz3v0Nk5IVtso5kGJidLkrjNGWi50uec6ILcREEsuG6PG89xj8T2tjUgffhqY7qWhOGJNcCOgoOFMm-BiDrdQxuG8dToqA6p2pzpnqnamLsy7ycI44a-0fLllBoQD2C24wZV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513396770</pqid></control><display><type>article</type><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><source>IEEE Electronic Library (IEL)</source><creator>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</creator><creatorcontrib>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</creatorcontrib><description><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3067622</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; and learning for soft robots ; Cameras ; control ; Controllers ; Degrees of freedom ; Disturbances ; Error analysis ; Heating systems ; Hydrogels ; Linear matrix inequalities ; Manipulator dynamics ; Manipulators ; Mathematical analysis ; Model testing ; Modeling ; Output feedback ; Robot arms ; Robust control ; soft robot applications ; soft robot materials and design ; soft sensors and actuators ; Stability ; State space models ; State-space methods ; Tracking control ; Trajectory ; Trajectory control ; Trajectory optimization</subject><ispartof>IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4774-4781</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</citedby><cites>FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</cites><orcidid>0000-0001-5657-3121 ; 0000-0001-9239-0509 ; 0000-0002-8410-3554 ; 0000-0002-3360-2978 ; 0000-0002-7746-2401 ; 0000-0003-4071-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doroudchi, Azadeh</creatorcontrib><creatorcontrib>Khodambashi, Roozbeh</creatorcontrib><creatorcontrib>Sharifzadeh, Mohammad</creatorcontrib><creatorcontrib>Li, Dongting</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><creatorcontrib>Aukes, Daniel M.</creatorcontrib><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></description><subject>Actuators</subject><subject>and learning for soft robots</subject><subject>Cameras</subject><subject>control</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>Disturbances</subject><subject>Error analysis</subject><subject>Heating systems</subject><subject>Hydrogels</subject><subject>Linear matrix inequalities</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mathematical analysis</subject><subject>Model testing</subject><subject>Modeling</subject><subject>Output feedback</subject><subject>Robot arms</subject><subject>Robust control</subject><subject>soft robot applications</subject><subject>soft robot materials and design</subject><subject>soft sensors and actuators</subject><subject>Stability</subject><subject>State space models</subject><subject>State-space methods</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Trajectory control</subject><subject>Trajectory optimization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWGrvgpeA562TpJtsjqVaW2gpSMVjyKbZmrpuapI99N-7S4t4mmF438zwELonMCYE5NPqbTqmQMmYARec0is0oEyIjAnOr__1t2gU4wEASE4Fk_kALbdBmy_X7PHMNyn4GvsKa7x2jdOpDRbT7Hkzx2vduGNb6-QD_nDpEy9Ou-D3tsZTk9p-HO_QTaXraEeXOkTv85ftbJGtNq_L2XSVGSpJyjhQKijVhGhegbS8lJwz3v0Nk5IVtso5kGJidLkrjNGWi50uec6ILcREEsuG6PG89xj8T2tjUgffhqY7qWhOGJNcCOgoOFMm-BiDrdQxuG8dToqA6p2pzpnqnamLsy7ycI44a-0fLllBoQD2C24wZV4</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Doroudchi, Azadeh</creator><creator>Khodambashi, Roozbeh</creator><creator>Sharifzadeh, Mohammad</creator><creator>Li, Dongting</creator><creator>Berman, Spring</creator><creator>Aukes, Daniel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5657-3121</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-8410-3554</orcidid><orcidid>https://orcid.org/0000-0002-3360-2978</orcidid><orcidid>https://orcid.org/0000-0002-7746-2401</orcidid><orcidid>https://orcid.org/0000-0003-4071-9629</orcidid></search><sort><creationdate>20210701</creationdate><title>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</title><author>Doroudchi, Azadeh ; Khodambashi, Roozbeh ; Sharifzadeh, Mohammad ; Li, Dongting ; Berman, Spring ; Aukes, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6022722a11a6f09e6b9663606704b38ef560184cabd8ccae67dab6531e87491e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>and learning for soft robots</topic><topic>Cameras</topic><topic>control</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>Disturbances</topic><topic>Error analysis</topic><topic>Heating systems</topic><topic>Hydrogels</topic><topic>Linear matrix inequalities</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mathematical analysis</topic><topic>Model testing</topic><topic>Modeling</topic><topic>Output feedback</topic><topic>Robot arms</topic><topic>Robust control</topic><topic>soft robot applications</topic><topic>soft robot materials and design</topic><topic>soft sensors and actuators</topic><topic>Stability</topic><topic>State space models</topic><topic>State-space methods</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Trajectory control</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doroudchi, Azadeh</creatorcontrib><creatorcontrib>Khodambashi, Roozbeh</creatorcontrib><creatorcontrib>Sharifzadeh, Mohammad</creatorcontrib><creatorcontrib>Li, Dongting</creatorcontrib><creatorcontrib>Berman, Spring</creatorcontrib><creatorcontrib>Aukes, Daniel M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doroudchi, Azadeh</au><au>Khodambashi, Roozbeh</au><au>Sharifzadeh, Mohammad</au><au>Li, Dongting</au><au>Berman, Spring</au><au>Aukes, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>4774</spage><epage>4781</epage><pages>4774-4781</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[Due to the nature of the complex spatiotemporal dynamics of stimuli-responsive soft materials, closed-loop control of hydrogel-actuated mechanisms has remained a challenge. This letter demonstrates, for the first time, closed-loop trajectory tracking control in real-time of a millimeter-scale, two degree-of-freedom manipulator via independently-controllable , temperature-responsive hydrogel actuators. A linear state-space model of the manipulator is developed from input-output measurement data, enabling the straightforward application of control techniques to the system. The Normalized Mean Absolute Error (NMAE) between the modeled and measured displacement of the manipulator's tip is below 10%. We propose an Observer-based controller and a robust <inline-formula><tex-math notation="LaTeX">H_{\infty }</tex-math></inline-formula>-optimal controller and evaluate their performance in a trajectory tracking output-feedback framework, compared with and without sinusoidal disturbances and noise. We demonstrate in simulation that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller, which is computed using Linear Matrix Inequality (LMI) methods, tracks an elliptical trajectory more accurately than the Observer controller and is more robust to disturbances and noise. We also show experimentally that the <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal controller can be used to track different trajectories with an NMAE below 15<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>, even when the manipulator is subject to a 3 g load, 12.5 times an actuator's weight. Finally, a payload transport scenario is presented as an exemplar application; we demonstrate that an array of four manipulators is capable of moving a payload horizontally by applying the proposed <inline-formula><tex-math notation="LaTeX">H_\infty</tex-math></inline-formula>-optimal trajectory-tracking controller to each manipulator in a decoupled manner.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3067622</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5657-3121</orcidid><orcidid>https://orcid.org/0000-0001-9239-0509</orcidid><orcidid>https://orcid.org/0000-0002-8410-3554</orcidid><orcidid>https://orcid.org/0000-0002-3360-2978</orcidid><orcidid>https://orcid.org/0000-0002-7746-2401</orcidid><orcidid>https://orcid.org/0000-0003-4071-9629</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-07, Vol.6 (3), p.4774-4781
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2513396770
source IEEE Electronic Library (IEL)
subjects Actuators
and learning for soft robots
Cameras
control
Controllers
Degrees of freedom
Disturbances
Error analysis
Heating systems
Hydrogels
Linear matrix inequalities
Manipulator dynamics
Manipulators
Mathematical analysis
Model testing
Modeling
Output feedback
Robot arms
Robust control
soft robot applications
soft robot materials and design
soft sensors and actuators
Stability
State space models
State-space methods
Tracking control
Trajectory
Trajectory control
Trajectory optimization
title Tracking Control of a Miniature 2-DOF Manipulator With Hydrogel Actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20Control%20of%20a%20Miniature%202-DOF%20Manipulator%20With%20Hydrogel%20Actuators&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Doroudchi,%20Azadeh&rft.date=2021-07-01&rft.volume=6&rft.issue=3&rft.spage=4774&rft.epage=4781&rft.pages=4774-4781&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3067622&rft_dat=%3Cproquest_RIE%3E2513396770%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513396770&rft_id=info:pmid/&rft_ieee_id=9382080&rfr_iscdi=true