Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems
Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, high resolutions, and repeatability. Stereo vision, photometric stereo, light sectioning, and structured light are the most common principles for in...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.53952-53963 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53963 |
---|---|
container_issue | |
container_start_page | 53952 |
container_title | IEEE access |
container_volume | 9 |
creator | Traxler, Lukas Ginner, Laurin Breuss, Simon Blaschitz, Bernhard |
description | Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, high resolutions, and repeatability. Stereo vision, photometric stereo, light sectioning, and structured light are the most common principles for inline imaging in the several micrometers to sub-millimeter resolution range. Selecting the correct sensor principle can be challenging as manufacturers' datasheets frequently use different values to describe their systems and do not stick to proposed characterizations defined by the "Initiative Fair Data Sheet" or the VDE/VDI standards. With the help of standardized parameters, this paper aims to compare four different measurement principles, namely AIT's own single sensor light field camera method, a structured light pattern projector, a laser triangulation sensor, and a stereo camera system, with an approximate field of view of 100\times 100 mm. We demonstrate simple yet meaningful experiments to determine lateral resolution, temporal noise, and calibration accuracy to enable an objective system comparison. Additionally, the reproduction of small surface structures and an overall performance on a challenging test object is evaluated. Results show that the measurement principles partly serve different application areas. The provided methods will help end users to select the correct sensor for specific applications. |
doi_str_mv | 10.1109/ACCESS.2021.3070381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2513390740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9393324</ieee_id><doaj_id>oai_doaj_org_article_48e9681b9135432bb5a270cf0eea6ec9</doaj_id><sourcerecordid>2513390740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a99422d2c672713266c72f2c01fe8582c5a09ff82198e0690247ed2b3472c08b3</originalsourceid><addsrcrecordid>eNpNkVFLwzAUhYsoOKa_wJeCz5vJvW2TPI46daDsYfoc0vRWOramJh3ovzezY5iXhJPvnNxwkuSOsznnTD0synK52cyBAZ8jEwwlv0gmwAs1wxyLy3_n6-Q2hC2LS0YpF5Nkvfzuybd76gazS0u3741vg-tS16TrfmhtVFfdru0oxcf0jUw4eDrSqenqeBN6skMb-c1PGGgfbpKrxuwC3Z72afLxtHwvX2av6-dVuXid2YzJYWaUygBqsIUAwRGKwgpowDLekMwl2Nww1TQSuJLECsUgE1RDhZmIkKxwmqzG3NqZre7jD4z_0c60-k9w_lMbH8ffkc4kqULySnHMM4Sqyg0IZhtGZAqyKmbdj1m9d18HCoPeuoPv4vgaco6omMhYpHCkrHcheGrOr3Kmj0XosQh9LEKfioiuu9HVEtHZoVAhQoa_jM6CNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513390740</pqid></control><display><type>article</type><title>Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems</title><source>IEEE Open Access Journals</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Traxler, Lukas ; Ginner, Laurin ; Breuss, Simon ; Blaschitz, Bernhard</creator><creatorcontrib>Traxler, Lukas ; Ginner, Laurin ; Breuss, Simon ; Blaschitz, Bernhard</creatorcontrib><description>Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, high resolutions, and repeatability. Stereo vision, photometric stereo, light sectioning, and structured light are the most common principles for inline imaging in the several micrometers to sub-millimeter resolution range. Selecting the correct sensor principle can be challenging as manufacturers' datasheets frequently use different values to describe their systems and do not stick to proposed characterizations defined by the "Initiative Fair Data Sheet" or the VDE/VDI standards. With the help of standardized parameters, this paper aims to compare four different measurement principles, namely AIT's own single sensor light field camera method, a structured light pattern projector, a laser triangulation sensor, and a stereo camera system, with an approximate field of view of <inline-formula> <tex-math notation="LaTeX">100\times 100 </tex-math></inline-formula>mm. We demonstrate simple yet meaningful experiments to determine lateral resolution, temporal noise, and calibration accuracy to enable an objective system comparison. Additionally, the reproduction of small surface structures and an overall performance on a challenging test object is evaluated. Results show that the measurement principles partly serve different application areas. The provided methods will help end users to select the correct sensor for specific applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3070381</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D imaging ; Automatic optical inspection ; Calibration ; Cameras ; Data sheets ; End users ; Field cameras ; Field of view ; inline imaging ; Inspection ; Light sectioning ; Lighting ; measurement accuracy ; measurement precision ; Micrometers ; Optical imaging ; Optical sensors ; Principles ; Sensors ; Structured light patterns ; Three-dimensional displays ; Triangulation ; visual inspection ; Visual tasks</subject><ispartof>IEEE access, 2021, Vol.9, p.53952-53963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a99422d2c672713266c72f2c01fe8582c5a09ff82198e0690247ed2b3472c08b3</citedby><cites>FETCH-LOGICAL-c408t-a99422d2c672713266c72f2c01fe8582c5a09ff82198e0690247ed2b3472c08b3</cites><orcidid>0000-0002-4227-1445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9393324$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Traxler, Lukas</creatorcontrib><creatorcontrib>Ginner, Laurin</creatorcontrib><creatorcontrib>Breuss, Simon</creatorcontrib><creatorcontrib>Blaschitz, Bernhard</creatorcontrib><title>Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, high resolutions, and repeatability. Stereo vision, photometric stereo, light sectioning, and structured light are the most common principles for inline imaging in the several micrometers to sub-millimeter resolution range. Selecting the correct sensor principle can be challenging as manufacturers' datasheets frequently use different values to describe their systems and do not stick to proposed characterizations defined by the "Initiative Fair Data Sheet" or the VDE/VDI standards. With the help of standardized parameters, this paper aims to compare four different measurement principles, namely AIT's own single sensor light field camera method, a structured light pattern projector, a laser triangulation sensor, and a stereo camera system, with an approximate field of view of <inline-formula> <tex-math notation="LaTeX">100\times 100 </tex-math></inline-formula>mm. We demonstrate simple yet meaningful experiments to determine lateral resolution, temporal noise, and calibration accuracy to enable an objective system comparison. Additionally, the reproduction of small surface structures and an overall performance on a challenging test object is evaluated. Results show that the measurement principles partly serve different application areas. The provided methods will help end users to select the correct sensor for specific applications.</description><subject>3D imaging</subject><subject>Automatic optical inspection</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Data sheets</subject><subject>End users</subject><subject>Field cameras</subject><subject>Field of view</subject><subject>inline imaging</subject><subject>Inspection</subject><subject>Light sectioning</subject><subject>Lighting</subject><subject>measurement accuracy</subject><subject>measurement precision</subject><subject>Micrometers</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Principles</subject><subject>Sensors</subject><subject>Structured light patterns</subject><subject>Three-dimensional displays</subject><subject>Triangulation</subject><subject>visual inspection</subject><subject>Visual tasks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLwzAUhYsoOKa_wJeCz5vJvW2TPI46daDsYfoc0vRWOramJh3ovzezY5iXhJPvnNxwkuSOsznnTD0synK52cyBAZ8jEwwlv0gmwAs1wxyLy3_n6-Q2hC2LS0YpF5Nkvfzuybd76gazS0u3741vg-tS16TrfmhtVFfdru0oxcf0jUw4eDrSqenqeBN6skMb-c1PGGgfbpKrxuwC3Z72afLxtHwvX2av6-dVuXid2YzJYWaUygBqsIUAwRGKwgpowDLekMwl2Nww1TQSuJLECsUgE1RDhZmIkKxwmqzG3NqZre7jD4z_0c60-k9w_lMbH8ffkc4kqULySnHMM4Sqyg0IZhtGZAqyKmbdj1m9d18HCoPeuoPv4vgaco6omMhYpHCkrHcheGrOr3Kmj0XosQh9LEKfioiuu9HVEtHZoVAhQoa_jM6CNQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Traxler, Lukas</creator><creator>Ginner, Laurin</creator><creator>Breuss, Simon</creator><creator>Blaschitz, Bernhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4227-1445</orcidid></search><sort><creationdate>2021</creationdate><title>Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems</title><author>Traxler, Lukas ; Ginner, Laurin ; Breuss, Simon ; Blaschitz, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a99422d2c672713266c72f2c01fe8582c5a09ff82198e0690247ed2b3472c08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D imaging</topic><topic>Automatic optical inspection</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Data sheets</topic><topic>End users</topic><topic>Field cameras</topic><topic>Field of view</topic><topic>inline imaging</topic><topic>Inspection</topic><topic>Light sectioning</topic><topic>Lighting</topic><topic>measurement accuracy</topic><topic>measurement precision</topic><topic>Micrometers</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Principles</topic><topic>Sensors</topic><topic>Structured light patterns</topic><topic>Three-dimensional displays</topic><topic>Triangulation</topic><topic>visual inspection</topic><topic>Visual tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Traxler, Lukas</creatorcontrib><creatorcontrib>Ginner, Laurin</creatorcontrib><creatorcontrib>Breuss, Simon</creatorcontrib><creatorcontrib>Blaschitz, Bernhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Traxler, Lukas</au><au>Ginner, Laurin</au><au>Breuss, Simon</au><au>Blaschitz, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>53952</spage><epage>53963</epage><pages>53952-53963</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fast optical 3D inline inspection sensors are a powerful tool to advance factory automation. Many of these visual inspection tasks require high speeds, high resolutions, and repeatability. Stereo vision, photometric stereo, light sectioning, and structured light are the most common principles for inline imaging in the several micrometers to sub-millimeter resolution range. Selecting the correct sensor principle can be challenging as manufacturers' datasheets frequently use different values to describe their systems and do not stick to proposed characterizations defined by the "Initiative Fair Data Sheet" or the VDE/VDI standards. With the help of standardized parameters, this paper aims to compare four different measurement principles, namely AIT's own single sensor light field camera method, a structured light pattern projector, a laser triangulation sensor, and a stereo camera system, with an approximate field of view of <inline-formula> <tex-math notation="LaTeX">100\times 100 </tex-math></inline-formula>mm. We demonstrate simple yet meaningful experiments to determine lateral resolution, temporal noise, and calibration accuracy to enable an objective system comparison. Additionally, the reproduction of small surface structures and an overall performance on a challenging test object is evaluated. Results show that the measurement principles partly serve different application areas. The provided methods will help end users to select the correct sensor for specific applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3070381</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4227-1445</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.53952-53963 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2513390740 |
source | IEEE Open Access Journals; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | 3D imaging Automatic optical inspection Calibration Cameras Data sheets End users Field cameras Field of view inline imaging Inspection Light sectioning Lighting measurement accuracy measurement precision Micrometers Optical imaging Optical sensors Principles Sensors Structured light patterns Three-dimensional displays Triangulation visual inspection Visual tasks |
title | Experimental Comparison of Optical Inline 3D Measurement and Inspection Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Comparison%20of%20Optical%20Inline%203D%20Measurement%20and%20Inspection%20Systems&rft.jtitle=IEEE%20access&rft.au=Traxler,%20Lukas&rft.date=2021&rft.volume=9&rft.spage=53952&rft.epage=53963&rft.pages=53952-53963&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3070381&rft_dat=%3Cproquest_doaj_%3E2513390740%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513390740&rft_id=info:pmid/&rft_ieee_id=9393324&rft_doaj_id=oai_doaj_org_article_48e9681b9135432bb5a270cf0eea6ec9&rfr_iscdi=true |