Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability
The blowout preventer is an important system for safety assurance in well drilling operations. Therefore, the efficient management of its reliability is an essential issue for risk prevention. In the present paper one considers a dynamic Bayesian network for reliability modeling, approaching correct...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2020-12, Vol.18 (12), p.2029-2036 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2036 |
---|---|
container_issue | 12 |
container_start_page | 2029 |
container_title | Revista IEEE América Latina |
container_volume | 18 |
creator | de Almada Garcia, Pauli Adriano de Carvalho Duim, Fernanda Abizethe da Cruz Saldanha, Pedro Luiz Couto Jacinto, Carlos Magno Alves Lima, Gilson Brito |
description | The blowout preventer is an important system for safety assurance in well drilling operations. Therefore, the efficient management of its reliability is an essential issue for risk prevention. In the present paper one considers a dynamic Bayesian network for reliability modeling, approaching corrective maintenance and an imperfect coverage factor, combining with a hierarchical Bayesian inference. Traditionally, the coverage factor in this kind of analysis for well safety is based on belief values. Considering that, we will approach it through a Bayesian analysis for the experts’ opinion. Thus, the present paper presents a fully Bayesian approach for blowout preventer reliability analysis, combining experts’ opinions in a dynamic Bayesian net modeling. In the end, is possible to compare results with and without imperfect coverage factor, and with belief values. The obtained results for a hypothetical case show the importance of considering the estimates’ uncertainties in the context of reliability management of drilling operations. |
doi_str_mv | 10.1109/TLA.2020.9400429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2513390471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9400429</ieee_id><sourcerecordid>2513390471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-c9b5b45b6f7063f37fdd28adb940b11f81b6e17aa530754c45ea39de266335143</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvAg6et-dzdHNvSqlCoSD2HZHeiKTW7Jlux_71bWsXTDDPvzWN-CF1TMqKUqPvVYjxihJGREoQIpk7QgEpRZkQpdvqvP0cXKa0J4WVe8gFazb5biF26w03rg29CZk2CGk_MDpI3AT8FBxFCBdg1EXfvgKfNF0TzBnhuqq6f-YAny2f8AhtvrN_4bneJzpzZJLg61iF6nc9W08dssXx4mo4XWUUL0WWVstIKaXNXkJw7Xri6ZqWpbf-CpdSV1OZAC2MkJ4UUlZBguKqB5Tnnkgo-RLeHu21sPreQOr1utjH0kZpJyrkioqC9ihxUVWxSiuB0G_2HiTtNid6z0z07vWenj-x6y83B4gHgT_67_QFkpGkz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513390471</pqid></control><display><type>article</type><title>Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability</title><source>IEEE Electronic Library (IEL)</source><creator>de Almada Garcia, Pauli Adriano ; de Carvalho Duim, Fernanda Abizethe ; da Cruz Saldanha, Pedro Luiz ; Couto Jacinto, Carlos Magno ; Alves Lima, Gilson Brito</creator><creatorcontrib>de Almada Garcia, Pauli Adriano ; de Carvalho Duim, Fernanda Abizethe ; da Cruz Saldanha, Pedro Luiz ; Couto Jacinto, Carlos Magno ; Alves Lima, Gilson Brito</creatorcontrib><description>The blowout preventer is an important system for safety assurance in well drilling operations. Therefore, the efficient management of its reliability is an essential issue for risk prevention. In the present paper one considers a dynamic Bayesian network for reliability modeling, approaching corrective maintenance and an imperfect coverage factor, combining with a hierarchical Bayesian inference. Traditionally, the coverage factor in this kind of analysis for well safety is based on belief values. Considering that, we will approach it through a Bayesian analysis for the experts’ opinion. Thus, the present paper presents a fully Bayesian approach for blowout preventer reliability analysis, combining experts’ opinions in a dynamic Bayesian net modeling. In the end, is possible to compare results with and without imperfect coverage factor, and with belief values. The obtained results for a hypothetical case show the importance of considering the estimates’ uncertainties in the context of reliability management of drilling operations.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2020.9400429</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Blowout preventer reliability ; Coverage factor ; Expert´s Opinion ; IEEE transactions ; Markov processes ; Model testing ; Modelling ; Network reliability ; Reliability ; Reliability analysis ; Reliability aspects ; Safety ; Statistical inference ; Tornadoes ; Uncertainty ; Well drilling</subject><ispartof>Revista IEEE América Latina, 2020-12, Vol.18 (12), p.2029-2036</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7617-0960 ; 0000-0002-7897-5217 ; 0000-0002-4672-1431 ; 0000-0002-3934-4332 ; 0000-0001-6741-2403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9400429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9400429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Almada Garcia, Pauli Adriano</creatorcontrib><creatorcontrib>de Carvalho Duim, Fernanda Abizethe</creatorcontrib><creatorcontrib>da Cruz Saldanha, Pedro Luiz</creatorcontrib><creatorcontrib>Couto Jacinto, Carlos Magno</creatorcontrib><creatorcontrib>Alves Lima, Gilson Brito</creatorcontrib><title>Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The blowout preventer is an important system for safety assurance in well drilling operations. Therefore, the efficient management of its reliability is an essential issue for risk prevention. In the present paper one considers a dynamic Bayesian network for reliability modeling, approaching corrective maintenance and an imperfect coverage factor, combining with a hierarchical Bayesian inference. Traditionally, the coverage factor in this kind of analysis for well safety is based on belief values. Considering that, we will approach it through a Bayesian analysis for the experts’ opinion. Thus, the present paper presents a fully Bayesian approach for blowout preventer reliability analysis, combining experts’ opinions in a dynamic Bayesian net modeling. In the end, is possible to compare results with and without imperfect coverage factor, and with belief values. The obtained results for a hypothetical case show the importance of considering the estimates’ uncertainties in the context of reliability management of drilling operations.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Blowout preventer reliability</subject><subject>Coverage factor</subject><subject>Expert´s Opinion</subject><subject>IEEE transactions</subject><subject>Markov processes</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Network reliability</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Safety</subject><subject>Statistical inference</subject><subject>Tornadoes</subject><subject>Uncertainty</subject><subject>Well drilling</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvAg6et-dzdHNvSqlCoSD2HZHeiKTW7Jlux_71bWsXTDDPvzWN-CF1TMqKUqPvVYjxihJGREoQIpk7QgEpRZkQpdvqvP0cXKa0J4WVe8gFazb5biF26w03rg29CZk2CGk_MDpI3AT8FBxFCBdg1EXfvgKfNF0TzBnhuqq6f-YAny2f8AhtvrN_4bneJzpzZJLg61iF6nc9W08dssXx4mo4XWUUL0WWVstIKaXNXkJw7Xri6ZqWpbf-CpdSV1OZAC2MkJ4UUlZBguKqB5Tnnkgo-RLeHu21sPreQOr1utjH0kZpJyrkioqC9ihxUVWxSiuB0G_2HiTtNid6z0z07vWenj-x6y83B4gHgT_67_QFkpGkz</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>de Almada Garcia, Pauli Adriano</creator><creator>de Carvalho Duim, Fernanda Abizethe</creator><creator>da Cruz Saldanha, Pedro Luiz</creator><creator>Couto Jacinto, Carlos Magno</creator><creator>Alves Lima, Gilson Brito</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7617-0960</orcidid><orcidid>https://orcid.org/0000-0002-7897-5217</orcidid><orcidid>https://orcid.org/0000-0002-4672-1431</orcidid><orcidid>https://orcid.org/0000-0002-3934-4332</orcidid><orcidid>https://orcid.org/0000-0001-6741-2403</orcidid></search><sort><creationdate>20201201</creationdate><title>Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability</title><author>de Almada Garcia, Pauli Adriano ; de Carvalho Duim, Fernanda Abizethe ; da Cruz Saldanha, Pedro Luiz ; Couto Jacinto, Carlos Magno ; Alves Lima, Gilson Brito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-c9b5b45b6f7063f37fdd28adb940b11f81b6e17aa530754c45ea39de266335143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Blowout preventer reliability</topic><topic>Coverage factor</topic><topic>Expert´s Opinion</topic><topic>IEEE transactions</topic><topic>Markov processes</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Network reliability</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Safety</topic><topic>Statistical inference</topic><topic>Tornadoes</topic><topic>Uncertainty</topic><topic>Well drilling</topic><toplevel>online_resources</toplevel><creatorcontrib>de Almada Garcia, Pauli Adriano</creatorcontrib><creatorcontrib>de Carvalho Duim, Fernanda Abizethe</creatorcontrib><creatorcontrib>da Cruz Saldanha, Pedro Luiz</creatorcontrib><creatorcontrib>Couto Jacinto, Carlos Magno</creatorcontrib><creatorcontrib>Alves Lima, Gilson Brito</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Almada Garcia, Pauli Adriano</au><au>de Carvalho Duim, Fernanda Abizethe</au><au>da Cruz Saldanha, Pedro Luiz</au><au>Couto Jacinto, Carlos Magno</au><au>Alves Lima, Gilson Brito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>18</volume><issue>12</issue><spage>2029</spage><epage>2036</epage><pages>2029-2036</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The blowout preventer is an important system for safety assurance in well drilling operations. Therefore, the efficient management of its reliability is an essential issue for risk prevention. In the present paper one considers a dynamic Bayesian network for reliability modeling, approaching corrective maintenance and an imperfect coverage factor, combining with a hierarchical Bayesian inference. Traditionally, the coverage factor in this kind of analysis for well safety is based on belief values. Considering that, we will approach it through a Bayesian analysis for the experts’ opinion. Thus, the present paper presents a fully Bayesian approach for blowout preventer reliability analysis, combining experts’ opinions in a dynamic Bayesian net modeling. In the end, is possible to compare results with and without imperfect coverage factor, and with belief values. The obtained results for a hypothetical case show the importance of considering the estimates’ uncertainties in the context of reliability management of drilling operations.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2020.9400429</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7617-0960</orcidid><orcidid>https://orcid.org/0000-0002-7897-5217</orcidid><orcidid>https://orcid.org/0000-0002-4672-1431</orcidid><orcidid>https://orcid.org/0000-0002-3934-4332</orcidid><orcidid>https://orcid.org/0000-0001-6741-2403</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2020-12, Vol.18 (12), p.2029-2036 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_2513390471 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayesian analysis Blowout preventer reliability Coverage factor Expert´s Opinion IEEE transactions Markov processes Model testing Modelling Network reliability Reliability Reliability analysis Reliability aspects Safety Statistical inference Tornadoes Uncertainty Well drilling |
title | Experts' opinion-based Bayesian Inference for the Coverage Factor in BOP Reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experts'%20opinion-based%20Bayesian%20Inference%20for%20the%20Coverage%20Factor%20in%20BOP%20Reliability&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=de%20Almada%20Garcia,%20Pauli%20Adriano&rft.date=2020-12-01&rft.volume=18&rft.issue=12&rft.spage=2029&rft.epage=2036&rft.pages=2029-2036&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2020.9400429&rft_dat=%3Cproquest_RIE%3E2513390471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513390471&rft_id=info:pmid/&rft_ieee_id=9400429&rfr_iscdi=true |