Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones

The complexity of composition of bio‐oil from biomass makes it difficult to produce upgraded bio‐oil via hydrodeoxygenation. In this paper, acetone is thus considered as a model compound of the ketones family abundant in pyrolysis bio‐oil. Results showed that high conversion rates of acetone between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2021-05, Vol.99 (5), p.1082-1093
Hauptverfasser: Wang, Jundong, Jabbour, Michael, Abdelouahed, Lokmane, Mezghich, Soumaya, Estel, Lionel, Thomas, Karine, Taouk, Bechara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 5
container_start_page 1082
container_title Canadian journal of chemical engineering
container_volume 99
creator Wang, Jundong
Jabbour, Michael
Abdelouahed, Lokmane
Mezghich, Soumaya
Estel, Lionel
Thomas, Karine
Taouk, Bechara
description The complexity of composition of bio‐oil from biomass makes it difficult to produce upgraded bio‐oil via hydrodeoxygenation. In this paper, acetone is thus considered as a model compound of the ketones family abundant in pyrolysis bio‐oil. Results showed that high conversion rates of acetone between 86.6% and 91.9% were observed with the use of HZSM‐5, 5% Ni2P/HZSM‐5, and 10% Ni2P/HZSM‐5 catalysts. In most cases, CO2, C2H6, C3H6, and C3H8 were the dominant non‐condensable gas products. For liquid phase, the selectivity was evaluated for different catalysts relative to ethanol, acetaldehyde, and aromatic hydrocarbons. A lower temperature favoured the formation of acetaldehyde and methyl isobutyl ketone with the 5% Ni2P/HZSM‐5 catalyst, while higher temperatures increased the proportion of aromatic hydrocarbons. The principal influencing parameters of acetone HDO were temperature and contact time followed by reaction pressure and H2 partial pressure. Optimal conditions give a selectivity of 49% of aromatics (benzene, toluene, and xylene) with the use of the 5% Ni2P/HZSM‐5 catalyst. The pathway of the main reactions of acetone HDO was also proposed. MIK and aromatic hydrocarbons were formed by a multiple step aldol condensation reaction of acetone molecules followed by further hydrogenation.
doi_str_mv 10.1002/cjce.23909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513339457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513339457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3389-3da4809286b8817c70c4b1640cf25a82845a4e817b1b59d6ff9d8b2e6d621fb43</originalsourceid><addsrcrecordid>eNp9kM1Kw0AQxxdRsFYvPsGCNyF1v5LuepPQWqXgRcHbsl8pqWm27iZobj6Cz-iTmDSePc0M_9_MwA-AS4xmGCFyY7bGzQgVSByBCRZUJAiL12MwQQjxhCHKTsFZjNt-JIjhCdC5alTVNaWB7X4TlC3rDfQF1KX_-fr2ZXULV50N3jr_2W1crZrS1zA2re0GTBnX-NpBFeHOV860lesb66ohfDtk8RycFKqK7uKvTsHLcvGcr5L10_1DfrdODKVcJNQqxpEgPNOc47mZI8M0zhgyBUkVJ5ylirk-0VinwmZFISzXxGU2I7jQjE7B1Xh3H_x762Ijt74Ndf9SkhRTSgVL5z11PVIm-BiDK-Q-lDsVOomRHBzKwaE8OOxhPMIfZeW6f0iZP-aLcecXyoR1Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513339457</pqid></control><display><type>article</type><title>Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones</title><source>Access via Wiley Online Library</source><creator>Wang, Jundong ; Jabbour, Michael ; Abdelouahed, Lokmane ; Mezghich, Soumaya ; Estel, Lionel ; Thomas, Karine ; Taouk, Bechara</creator><creatorcontrib>Wang, Jundong ; Jabbour, Michael ; Abdelouahed, Lokmane ; Mezghich, Soumaya ; Estel, Lionel ; Thomas, Karine ; Taouk, Bechara</creatorcontrib><description>The complexity of composition of bio‐oil from biomass makes it difficult to produce upgraded bio‐oil via hydrodeoxygenation. In this paper, acetone is thus considered as a model compound of the ketones family abundant in pyrolysis bio‐oil. Results showed that high conversion rates of acetone between 86.6% and 91.9% were observed with the use of HZSM‐5, 5% Ni2P/HZSM‐5, and 10% Ni2P/HZSM‐5 catalysts. In most cases, CO2, C2H6, C3H6, and C3H8 were the dominant non‐condensable gas products. For liquid phase, the selectivity was evaluated for different catalysts relative to ethanol, acetaldehyde, and aromatic hydrocarbons. A lower temperature favoured the formation of acetaldehyde and methyl isobutyl ketone with the 5% Ni2P/HZSM‐5 catalyst, while higher temperatures increased the proportion of aromatic hydrocarbons. The principal influencing parameters of acetone HDO were temperature and contact time followed by reaction pressure and H2 partial pressure. Optimal conditions give a selectivity of 49% of aromatics (benzene, toluene, and xylene) with the use of the 5% Ni2P/HZSM‐5 catalyst. The pathway of the main reactions of acetone HDO was also proposed. MIK and aromatic hydrocarbons were formed by a multiple step aldol condensation reaction of acetone molecules followed by further hydrogenation.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.23909</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acetaldehyde ; Acetone ; Aldehydes ; Aromatic hydrocarbons ; Benzene ; Catalysts ; Condensates ; Contact pressure ; Ethanol ; Hydrocarbons ; hydrodeoxygenation ; Ketones ; Liquid phases ; Model testing ; nickel‐based catalysts ; Partial pressure ; Pyrolysis ; Selectivity ; Toluene ; Xylene</subject><ispartof>Canadian journal of chemical engineering, 2021-05, Vol.99 (5), p.1082-1093</ispartof><rights>2020 Canadian Society for Chemical Engineering</rights><rights>2021 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3389-3da4809286b8817c70c4b1640cf25a82845a4e817b1b59d6ff9d8b2e6d621fb43</citedby><cites>FETCH-LOGICAL-c3389-3da4809286b8817c70c4b1640cf25a82845a4e817b1b59d6ff9d8b2e6d621fb43</cites><orcidid>0000-0002-4444-5509 ; 0000-0002-9279-5116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.23909$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.23909$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Jundong</creatorcontrib><creatorcontrib>Jabbour, Michael</creatorcontrib><creatorcontrib>Abdelouahed, Lokmane</creatorcontrib><creatorcontrib>Mezghich, Soumaya</creatorcontrib><creatorcontrib>Estel, Lionel</creatorcontrib><creatorcontrib>Thomas, Karine</creatorcontrib><creatorcontrib>Taouk, Bechara</creatorcontrib><title>Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones</title><title>Canadian journal of chemical engineering</title><description>The complexity of composition of bio‐oil from biomass makes it difficult to produce upgraded bio‐oil via hydrodeoxygenation. In this paper, acetone is thus considered as a model compound of the ketones family abundant in pyrolysis bio‐oil. Results showed that high conversion rates of acetone between 86.6% and 91.9% were observed with the use of HZSM‐5, 5% Ni2P/HZSM‐5, and 10% Ni2P/HZSM‐5 catalysts. In most cases, CO2, C2H6, C3H6, and C3H8 were the dominant non‐condensable gas products. For liquid phase, the selectivity was evaluated for different catalysts relative to ethanol, acetaldehyde, and aromatic hydrocarbons. A lower temperature favoured the formation of acetaldehyde and methyl isobutyl ketone with the 5% Ni2P/HZSM‐5 catalyst, while higher temperatures increased the proportion of aromatic hydrocarbons. The principal influencing parameters of acetone HDO were temperature and contact time followed by reaction pressure and H2 partial pressure. Optimal conditions give a selectivity of 49% of aromatics (benzene, toluene, and xylene) with the use of the 5% Ni2P/HZSM‐5 catalyst. The pathway of the main reactions of acetone HDO was also proposed. MIK and aromatic hydrocarbons were formed by a multiple step aldol condensation reaction of acetone molecules followed by further hydrogenation.</description><subject>Acetaldehyde</subject><subject>Acetone</subject><subject>Aldehydes</subject><subject>Aromatic hydrocarbons</subject><subject>Benzene</subject><subject>Catalysts</subject><subject>Condensates</subject><subject>Contact pressure</subject><subject>Ethanol</subject><subject>Hydrocarbons</subject><subject>hydrodeoxygenation</subject><subject>Ketones</subject><subject>Liquid phases</subject><subject>Model testing</subject><subject>nickel‐based catalysts</subject><subject>Partial pressure</subject><subject>Pyrolysis</subject><subject>Selectivity</subject><subject>Toluene</subject><subject>Xylene</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AQxxdRsFYvPsGCNyF1v5LuepPQWqXgRcHbsl8pqWm27iZobj6Cz-iTmDSePc0M_9_MwA-AS4xmGCFyY7bGzQgVSByBCRZUJAiL12MwQQjxhCHKTsFZjNt-JIjhCdC5alTVNaWB7X4TlC3rDfQF1KX_-fr2ZXULV50N3jr_2W1crZrS1zA2re0GTBnX-NpBFeHOV860lesb66ohfDtk8RycFKqK7uKvTsHLcvGcr5L10_1DfrdODKVcJNQqxpEgPNOc47mZI8M0zhgyBUkVJ5ylirk-0VinwmZFISzXxGU2I7jQjE7B1Xh3H_x762Ijt74Ndf9SkhRTSgVL5z11PVIm-BiDK-Q-lDsVOomRHBzKwaE8OOxhPMIfZeW6f0iZP-aLcecXyoR1Sg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Wang, Jundong</creator><creator>Jabbour, Michael</creator><creator>Abdelouahed, Lokmane</creator><creator>Mezghich, Soumaya</creator><creator>Estel, Lionel</creator><creator>Thomas, Karine</creator><creator>Taouk, Bechara</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4444-5509</orcidid><orcidid>https://orcid.org/0000-0002-9279-5116</orcidid></search><sort><creationdate>202105</creationdate><title>Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones</title><author>Wang, Jundong ; Jabbour, Michael ; Abdelouahed, Lokmane ; Mezghich, Soumaya ; Estel, Lionel ; Thomas, Karine ; Taouk, Bechara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3389-3da4809286b8817c70c4b1640cf25a82845a4e817b1b59d6ff9d8b2e6d621fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetaldehyde</topic><topic>Acetone</topic><topic>Aldehydes</topic><topic>Aromatic hydrocarbons</topic><topic>Benzene</topic><topic>Catalysts</topic><topic>Condensates</topic><topic>Contact pressure</topic><topic>Ethanol</topic><topic>Hydrocarbons</topic><topic>hydrodeoxygenation</topic><topic>Ketones</topic><topic>Liquid phases</topic><topic>Model testing</topic><topic>nickel‐based catalysts</topic><topic>Partial pressure</topic><topic>Pyrolysis</topic><topic>Selectivity</topic><topic>Toluene</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jundong</creatorcontrib><creatorcontrib>Jabbour, Michael</creatorcontrib><creatorcontrib>Abdelouahed, Lokmane</creatorcontrib><creatorcontrib>Mezghich, Soumaya</creatorcontrib><creatorcontrib>Estel, Lionel</creatorcontrib><creatorcontrib>Thomas, Karine</creatorcontrib><creatorcontrib>Taouk, Bechara</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jundong</au><au>Jabbour, Michael</au><au>Abdelouahed, Lokmane</au><au>Mezghich, Soumaya</au><au>Estel, Lionel</au><au>Thomas, Karine</au><au>Taouk, Bechara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2021-05</date><risdate>2021</risdate><volume>99</volume><issue>5</issue><spage>1082</spage><epage>1093</epage><pages>1082-1093</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>The complexity of composition of bio‐oil from biomass makes it difficult to produce upgraded bio‐oil via hydrodeoxygenation. In this paper, acetone is thus considered as a model compound of the ketones family abundant in pyrolysis bio‐oil. Results showed that high conversion rates of acetone between 86.6% and 91.9% were observed with the use of HZSM‐5, 5% Ni2P/HZSM‐5, and 10% Ni2P/HZSM‐5 catalysts. In most cases, CO2, C2H6, C3H6, and C3H8 were the dominant non‐condensable gas products. For liquid phase, the selectivity was evaluated for different catalysts relative to ethanol, acetaldehyde, and aromatic hydrocarbons. A lower temperature favoured the formation of acetaldehyde and methyl isobutyl ketone with the 5% Ni2P/HZSM‐5 catalyst, while higher temperatures increased the proportion of aromatic hydrocarbons. The principal influencing parameters of acetone HDO were temperature and contact time followed by reaction pressure and H2 partial pressure. Optimal conditions give a selectivity of 49% of aromatics (benzene, toluene, and xylene) with the use of the 5% Ni2P/HZSM‐5 catalyst. The pathway of the main reactions of acetone HDO was also proposed. MIK and aromatic hydrocarbons were formed by a multiple step aldol condensation reaction of acetone molecules followed by further hydrogenation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.23909</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4444-5509</orcidid><orcidid>https://orcid.org/0000-0002-9279-5116</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2021-05, Vol.99 (5), p.1082-1093
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2513339457
source Access via Wiley Online Library
subjects Acetaldehyde
Acetone
Aldehydes
Aromatic hydrocarbons
Benzene
Catalysts
Condensates
Contact pressure
Ethanol
Hydrocarbons
hydrodeoxygenation
Ketones
Liquid phases
Model testing
nickel‐based catalysts
Partial pressure
Pyrolysis
Selectivity
Toluene
Xylene
title Catalytic upgrading of bio‐oil: Hydrodeoxygenation study of acetone as molecule model of ketones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20upgrading%20of%20bio%E2%80%90oil:%20Hydrodeoxygenation%20study%20of%20acetone%20as%20molecule%20model%20of%20ketones&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Wang,%20Jundong&rft.date=2021-05&rft.volume=99&rft.issue=5&rft.spage=1082&rft.epage=1093&rft.pages=1082-1093&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.23909&rft_dat=%3Cproquest_cross%3E2513339457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513339457&rft_id=info:pmid/&rfr_iscdi=true