Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study
In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heat...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2021-05, Vol.46 (5), p.4867-4881 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4881 |
---|---|
container_issue | 5 |
container_start_page | 4867 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 46 |
creator | Çolak, Andaç Batur Akçaözoğlu, Kubilay Akçaözoğlu, Semiha Beller, Gülhan |
description | In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%. |
doi_str_mv | 10.1007/s13369-020-05280-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513293894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513293894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</originalsourceid><addsrcrecordid>eNp9kc1KxDAURosoKOoLuAq4ruYm6Uzjrkj9AcUBR3AXMulNJ1LTMcmIvozPapwR3LlKIOd8uZevKE6AngGl0_MInE9kSRktacVqWsJOccBAQilYDbubOy-ryfR5vziO0S2oqLmsAPhB8dWE5KwzTg_k1iccBtejN0ia1SqM2iyJ82QWsHMmOd-TtETSWosmkdGSdsB3nbAjc3xdYdBpHZCMfkPdo1lq70wOnoUxvyaH8UeatXPS9H3APqvkfgxJh3hBGk_aj4y5V_QpS49p3X0eFXtWDxGPf8_D4umqnV_elHcP17eXzV1pOMhUaiEqJlneVjNpUS8QNOecUsNrjZ3QFqmsJgsjOi6EkRoWUwFTYTswE0lrflicbnPz0m9rjEm9jOvg85eKVcCZ5LUUmWJbyoQxxoBWrfK4OnwqoOqnCrWtQuUq1KYKBVniWylm2PcY_qL_sb4BLHeN1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513293894</pqid></control><display><type>article</type><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</creator><creatorcontrib>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</creatorcontrib><description>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-020-05280-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aggregates ; Artificial intelligence ; Artificial neural networks ; Compressive strength ; Engineering ; Flexural strength ; High temperature effects ; Humanities and Social Sciences ; Mechanical properties ; Mortars (material) ; multidisciplinary ; Neural networks ; Research Article-Civil Engineering ; Science</subject><ispartof>Arabian journal for science and engineering (2011), 2021-05, Vol.46 (5), p.4867-4881</ispartof><rights>King Fahd University of Petroleum & Minerals 2021</rights><rights>King Fahd University of Petroleum & Minerals 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</citedby><cites>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</cites><orcidid>0000-0001-9297-8134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-020-05280-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-020-05280-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Çolak, Andaç Batur</creatorcontrib><creatorcontrib>Akçaözoğlu, Kubilay</creatorcontrib><creatorcontrib>Akçaözoğlu, Semiha</creatorcontrib><creatorcontrib>Beller, Gülhan</creatorcontrib><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</description><subject>Aggregates</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Compressive strength</subject><subject>Engineering</subject><subject>Flexural strength</subject><subject>High temperature effects</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>Mortars (material)</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Research Article-Civil Engineering</subject><subject>Science</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAURosoKOoLuAq4ruYm6Uzjrkj9AcUBR3AXMulNJ1LTMcmIvozPapwR3LlKIOd8uZevKE6AngGl0_MInE9kSRktacVqWsJOccBAQilYDbubOy-ryfR5vziO0S2oqLmsAPhB8dWE5KwzTg_k1iccBtejN0ia1SqM2iyJ82QWsHMmOd-TtETSWosmkdGSdsB3nbAjc3xdYdBpHZCMfkPdo1lq70wOnoUxvyaH8UeatXPS9H3APqvkfgxJh3hBGk_aj4y5V_QpS49p3X0eFXtWDxGPf8_D4umqnV_elHcP17eXzV1pOMhUaiEqJlneVjNpUS8QNOecUsNrjZ3QFqmsJgsjOi6EkRoWUwFTYTswE0lrflicbnPz0m9rjEm9jOvg85eKVcCZ5LUUmWJbyoQxxoBWrfK4OnwqoOqnCrWtQuUq1KYKBVniWylm2PcY_qL_sb4BLHeN1w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Çolak, Andaç Batur</creator><creator>Akçaözoğlu, Kubilay</creator><creator>Akçaözoğlu, Semiha</creator><creator>Beller, Gülhan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9297-8134</orcidid></search><sort><creationdate>20210501</creationdate><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><author>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Compressive strength</topic><topic>Engineering</topic><topic>Flexural strength</topic><topic>High temperature effects</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>Mortars (material)</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Research Article-Civil Engineering</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çolak, Andaç Batur</creatorcontrib><creatorcontrib>Akçaözoğlu, Kubilay</creatorcontrib><creatorcontrib>Akçaözoğlu, Semiha</creatorcontrib><creatorcontrib>Beller, Gülhan</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çolak, Andaç Batur</au><au>Akçaözoğlu, Kubilay</au><au>Akçaözoğlu, Semiha</au><au>Beller, Gülhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>46</volume><issue>5</issue><spage>4867</spage><epage>4881</epage><pages>4867-4881</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-020-05280-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9297-8134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2021-05, Vol.46 (5), p.4867-4881 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2513293894 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aggregates Artificial intelligence Artificial neural networks Compressive strength Engineering Flexural strength High temperature effects Humanities and Social Sciences Mechanical properties Mortars (material) multidisciplinary Neural networks Research Article-Civil Engineering Science |
title | Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Approach%20in%20Predicting%20the%20Effect%20of%20Elevated%20Temperature%20on%20the%20Mechanical%20Properties%20of%20PET%20Aggregate%20Mortars:%20An%20Experimental%20Study&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=%C3%87olak,%20Anda%C3%A7%20Batur&rft.date=2021-05-01&rft.volume=46&rft.issue=5&rft.spage=4867&rft.epage=4881&rft.pages=4867-4881&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-020-05280-1&rft_dat=%3Cproquest_cross%3E2513293894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513293894&rft_id=info:pmid/&rfr_iscdi=true |