Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study

In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2021-05, Vol.46 (5), p.4867-4881
Hauptverfasser: Çolak, Andaç Batur, Akçaözoğlu, Kubilay, Akçaözoğlu, Semiha, Beller, Gülhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4881
container_issue 5
container_start_page 4867
container_title Arabian journal for science and engineering (2011)
container_volume 46
creator Çolak, Andaç Batur
Akçaözoğlu, Kubilay
Akçaözoğlu, Semiha
Beller, Gülhan
description In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.
doi_str_mv 10.1007/s13369-020-05280-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513293894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513293894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</originalsourceid><addsrcrecordid>eNp9kc1KxDAURosoKOoLuAq4ruYm6Uzjrkj9AcUBR3AXMulNJ1LTMcmIvozPapwR3LlKIOd8uZevKE6AngGl0_MInE9kSRktacVqWsJOccBAQilYDbubOy-ryfR5vziO0S2oqLmsAPhB8dWE5KwzTg_k1iccBtejN0ia1SqM2iyJ82QWsHMmOd-TtETSWosmkdGSdsB3nbAjc3xdYdBpHZCMfkPdo1lq70wOnoUxvyaH8UeatXPS9H3APqvkfgxJh3hBGk_aj4y5V_QpS49p3X0eFXtWDxGPf8_D4umqnV_elHcP17eXzV1pOMhUaiEqJlneVjNpUS8QNOecUsNrjZ3QFqmsJgsjOi6EkRoWUwFTYTswE0lrflicbnPz0m9rjEm9jOvg85eKVcCZ5LUUmWJbyoQxxoBWrfK4OnwqoOqnCrWtQuUq1KYKBVniWylm2PcY_qL_sb4BLHeN1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513293894</pqid></control><display><type>article</type><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</creator><creatorcontrib>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</creatorcontrib><description>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-020-05280-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aggregates ; Artificial intelligence ; Artificial neural networks ; Compressive strength ; Engineering ; Flexural strength ; High temperature effects ; Humanities and Social Sciences ; Mechanical properties ; Mortars (material) ; multidisciplinary ; Neural networks ; Research Article-Civil Engineering ; Science</subject><ispartof>Arabian journal for science and engineering (2011), 2021-05, Vol.46 (5), p.4867-4881</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2021</rights><rights>King Fahd University of Petroleum &amp; Minerals 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</citedby><cites>FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</cites><orcidid>0000-0001-9297-8134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-020-05280-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-020-05280-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Çolak, Andaç Batur</creatorcontrib><creatorcontrib>Akçaözoğlu, Kubilay</creatorcontrib><creatorcontrib>Akçaözoğlu, Semiha</creatorcontrib><creatorcontrib>Beller, Gülhan</creatorcontrib><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</description><subject>Aggregates</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Compressive strength</subject><subject>Engineering</subject><subject>Flexural strength</subject><subject>High temperature effects</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical properties</subject><subject>Mortars (material)</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Research Article-Civil Engineering</subject><subject>Science</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAURosoKOoLuAq4ruYm6Uzjrkj9AcUBR3AXMulNJ1LTMcmIvozPapwR3LlKIOd8uZevKE6AngGl0_MInE9kSRktacVqWsJOccBAQilYDbubOy-ryfR5vziO0S2oqLmsAPhB8dWE5KwzTg_k1iccBtejN0ia1SqM2iyJ82QWsHMmOd-TtETSWosmkdGSdsB3nbAjc3xdYdBpHZCMfkPdo1lq70wOnoUxvyaH8UeatXPS9H3APqvkfgxJh3hBGk_aj4y5V_QpS49p3X0eFXtWDxGPf8_D4umqnV_elHcP17eXzV1pOMhUaiEqJlneVjNpUS8QNOecUsNrjZ3QFqmsJgsjOi6EkRoWUwFTYTswE0lrflicbnPz0m9rjEm9jOvg85eKVcCZ5LUUmWJbyoQxxoBWrfK4OnwqoOqnCrWtQuUq1KYKBVniWylm2PcY_qL_sb4BLHeN1w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Çolak, Andaç Batur</creator><creator>Akçaözoğlu, Kubilay</creator><creator>Akçaözoğlu, Semiha</creator><creator>Beller, Gülhan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9297-8134</orcidid></search><sort><creationdate>20210501</creationdate><title>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</title><author>Çolak, Andaç Batur ; Akçaözoğlu, Kubilay ; Akçaözoğlu, Semiha ; Beller, Gülhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a445292281a29feabe1a33300c38aed4afe0956bc4d344c9a1b74174fd1c69083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Compressive strength</topic><topic>Engineering</topic><topic>Flexural strength</topic><topic>High temperature effects</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical properties</topic><topic>Mortars (material)</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Research Article-Civil Engineering</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çolak, Andaç Batur</creatorcontrib><creatorcontrib>Akçaözoğlu, Kubilay</creatorcontrib><creatorcontrib>Akçaözoğlu, Semiha</creatorcontrib><creatorcontrib>Beller, Gülhan</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çolak, Andaç Batur</au><au>Akçaözoğlu, Kubilay</au><au>Akçaözoğlu, Semiha</au><au>Beller, Gülhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>46</volume><issue>5</issue><spage>4867</spage><epage>4881</epage><pages>4867-4881</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>In this study, the effect of high temperature on the flexural and compressive strength of mortars containing waste PET aggregates was investigated experimentally. The mortar samples prepared in 5 different concentrations with a total of 2.5%, 5%, 10%, 20% and 30% PET aggregate substitution were heated up to 100, 150, 200, 250, 300 and 400 °C. After waiting for 1, 2 and 3 h at these temperatures, flexural and compressive strength tests were performed. It was observed that flexural strength and compressive strength values decreased with increasing temperature and PET aggregate amounts in all mixtures. An artificial neural network was designed to estimate flexural and compressive strength values using experimental data. It has been observed that the developed artificial neural network can predict flexural and compressive strengths with an average error of − 0.51%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-020-05280-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9297-8134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2021-05, Vol.46 (5), p.4867-4881
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2513293894
source SpringerLink Journals - AutoHoldings
subjects Aggregates
Artificial intelligence
Artificial neural networks
Compressive strength
Engineering
Flexural strength
High temperature effects
Humanities and Social Sciences
Mechanical properties
Mortars (material)
multidisciplinary
Neural networks
Research Article-Civil Engineering
Science
title Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A08%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Approach%20in%20Predicting%20the%20Effect%20of%20Elevated%20Temperature%20on%20the%20Mechanical%20Properties%20of%20PET%20Aggregate%20Mortars:%20An%20Experimental%20Study&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=%C3%87olak,%20Anda%C3%A7%20Batur&rft.date=2021-05-01&rft.volume=46&rft.issue=5&rft.spage=4867&rft.epage=4881&rft.pages=4867-4881&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-020-05280-1&rft_dat=%3Cproquest_cross%3E2513293894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513293894&rft_id=info:pmid/&rfr_iscdi=true