Reinforcement learning decoders for fault-tolerant quantum computation

Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2021-06, Vol.2 (2), p.25005
Hauptverfasser: Sweke, Ryan, Kesselring, Markus S, van Nieuwenburg, Evert P L, Eisert, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25005
container_title Machine learning: science and technology
container_volume 2
creator Sweke, Ryan
Kesselring, Markus S
van Nieuwenburg, Evert P L
Eisert, Jens
description Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.
doi_str_mv 10.1088/2632-2153/abc609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513107176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513107176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-719ec8e8b032119dd004c19a60a916da16243782cc68f46cd44e79a03ec9fc823</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKx791jwat1J0k2ToyyuCguC6Dlk06l0aZtuPg7-e1sq6sXLzDDzzDvMS8g1hTsKUq6Z4CxndMPX5mAFqDOy-Gmd_6kvySqEIwCwDeUbBguye8Wmr5232GEfsxaN75v-I6vQugp9yMZZVpvUxjy6Fr0ZoVMaY-oy67ohRRMb11-Ri9q0AVffeUnedw9v26d8__L4vL3f55ZJiHlJFVqJ8gCcUaqqCqCwVBkBRlFRGSpYwUvJrBWyLoStigJLZYCjVbWVjC_Jzaw7eHdKGKI-uuT78aSeXqJQ0lKMFMyU9S4Ej7UefNMZ_6kp6MkwPTmiJ0f0bNi4cjuvNG741fwX_wKGiWu7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513107176</pqid></control><display><type>article</type><title>Reinforcement learning decoders for fault-tolerant quantum computation</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sweke, Ryan ; Kesselring, Markus S ; van Nieuwenburg, Evert P L ; Eisert, Jens</creator><creatorcontrib>Sweke, Ryan ; Kesselring, Markus S ; van Nieuwenburg, Evert P L ; Eisert, Jens</creatorcontrib><description>Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/abc609</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Circuits ; Decoders ; Decoding ; Environment models ; Error correcting codes ; Error correction ; Fault tolerance ; fault tolerant quantum computing ; Learning ; Model testing ; Noise ; Noise propagation ; Quantum computing ; quantum error correction ; Qubits (quantum computing) ; reinforcement learning</subject><ispartof>Machine learning: science and technology, 2021-06, Vol.2 (2), p.25005</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-719ec8e8b032119dd004c19a60a916da16243782cc68f46cd44e79a03ec9fc823</citedby><cites>FETCH-LOGICAL-c280t-719ec8e8b032119dd004c19a60a916da16243782cc68f46cd44e79a03ec9fc823</cites><orcidid>0000-0003-0323-0031 ; 0000-0002-6202-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/abc609/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Sweke, Ryan</creatorcontrib><creatorcontrib>Kesselring, Markus S</creatorcontrib><creatorcontrib>van Nieuwenburg, Evert P L</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><title>Reinforcement learning decoders for fault-tolerant quantum computation</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Environment models</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>fault tolerant quantum computing</subject><subject>Learning</subject><subject>Model testing</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Quantum computing</subject><subject>quantum error correction</subject><subject>Qubits (quantum computing)</subject><subject>reinforcement learning</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouKx791jwat1J0k2ToyyuCguC6Dlk06l0aZtuPg7-e1sq6sXLzDDzzDvMS8g1hTsKUq6Z4CxndMPX5mAFqDOy-Gmd_6kvySqEIwCwDeUbBguye8Wmr5232GEfsxaN75v-I6vQugp9yMZZVpvUxjy6Fr0ZoVMaY-oy67ohRRMb11-Ri9q0AVffeUnedw9v26d8__L4vL3f55ZJiHlJFVqJ8gCcUaqqCqCwVBkBRlFRGSpYwUvJrBWyLoStigJLZYCjVbWVjC_Jzaw7eHdKGKI-uuT78aSeXqJQ0lKMFMyU9S4Ej7UefNMZ_6kp6MkwPTmiJ0f0bNi4cjuvNG741fwX_wKGiWu7</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Sweke, Ryan</creator><creator>Kesselring, Markus S</creator><creator>van Nieuwenburg, Evert P L</creator><creator>Eisert, Jens</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0323-0031</orcidid><orcidid>https://orcid.org/0000-0002-6202-8864</orcidid></search><sort><creationdate>20210601</creationdate><title>Reinforcement learning decoders for fault-tolerant quantum computation</title><author>Sweke, Ryan ; Kesselring, Markus S ; van Nieuwenburg, Evert P L ; Eisert, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-719ec8e8b032119dd004c19a60a916da16243782cc68f46cd44e79a03ec9fc823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Environment models</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>fault tolerant quantum computing</topic><topic>Learning</topic><topic>Model testing</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Quantum computing</topic><topic>quantum error correction</topic><topic>Qubits (quantum computing)</topic><topic>reinforcement learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sweke, Ryan</creatorcontrib><creatorcontrib>Kesselring, Markus S</creatorcontrib><creatorcontrib>van Nieuwenburg, Evert P L</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sweke, Ryan</au><au>Kesselring, Markus S</au><au>van Nieuwenburg, Evert P L</au><au>Eisert, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning decoders for fault-tolerant quantum computation</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>2</volume><issue>2</issue><spage>25005</spage><pages>25005-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Topological error correcting codes, and particularly the surface code, currently provide the most feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast and flexible decoding algorithms for these codes, within the experimentally realistic and challenging context of faulty syndrome measurements, without requiring any final read-out of the physical qubits, is of critical importance. In this work, we show that the problem of decoding such codes can be naturally reformulated as a process of repeated interactions between a decoding agent and a code environment, to which the machinery of reinforcement learning can be applied to obtain decoding agents. While in principle this framework can be instantiated with environments modelling circuit level noise, we take a first step towards this goal by using deepQ learning to obtain decoding agents for a variety of simplified phenomenological noise models, which yield faulty syndrome measurements without including the propagation of errors which arise in full circuit level noise models.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/abc609</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0323-0031</orcidid><orcidid>https://orcid.org/0000-0002-6202-8864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2021-06, Vol.2 (2), p.25005
issn 2632-2153
2632-2153
language eng
recordid cdi_proquest_journals_2513107176
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Circuits
Decoders
Decoding
Environment models
Error correcting codes
Error correction
Fault tolerance
fault tolerant quantum computing
Learning
Model testing
Noise
Noise propagation
Quantum computing
quantum error correction
Qubits (quantum computing)
reinforcement learning
title Reinforcement learning decoders for fault-tolerant quantum computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20decoders%20for%20fault-tolerant%20quantum%20computation&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Sweke,%20Ryan&rft.date=2021-06-01&rft.volume=2&rft.issue=2&rft.spage=25005&rft.pages=25005-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/abc609&rft_dat=%3Cproquest_cross%3E2513107176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513107176&rft_id=info:pmid/&rfr_iscdi=true