Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops

If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-01, Vol.1751 (1), p.12024
Hauptverfasser: Putri, D, Wamiliana, Fitriani, Faisol, A, Dewi, K S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12024
container_title Journal of physics. Conference series
container_volume 1751
creator Putri, D
Wamiliana
Fitriani
Faisol, A
Dewi, K S
description If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).
doi_str_mv 10.1088/1742-6596/1751/1/012024
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2513104640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513104640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-db5328476d40de802f67cee8fe1efc65fb805f2372ec60ec67ae14b36b92b0de3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3wlySph-7lG1-Medg09uQtidbRtvUpMPtZ_iPTa1OBMHAIYdz3uc98HreOcFXBMdxn0SM9sJgELouIH3Sx4Riyg68zn5zuO_j-Ng7sXaNse9e1PHeR1CDKVSpyiWqV4CmmyIBg7REI2VTXZaQ1pChFzC1SsGiiUggd4NbI6qVbXRPJnPAXG3Rm6pXnyaPYquKTfFttniDst6hmTAizyFH42zpnESZoaEua9Een2o00bqyp96RFLmFs6-_6z3fjBfDu97k6fZ-eD3ppTRirJclgU9jFoUZwxnEmMowSgFiCQRkGgYyiXEgqR9RSEPsKhJAWOKHyYAmjvC73kXrWxn9ugFb87XemNKd5DQgPsEsZNipolaVGm2tAckrowphdpxg3uTPm2R5kzJv8ueEt_k70m9Jpasf6_-pyz-oh9lw_lvIq0z6H6HSlog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513104640</pqid></control><display><type>article</type><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</creator><creatorcontrib>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</creatorcontrib><description>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1751/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Apexes ; counting graph ; disconnected graph ; Graph theory ; Graphs ; Physics ; vertices labelled graph</subject><ispartof>Journal of physics. Conference series, 2021-01, Vol.1751 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1751/1/012024/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Putri, D</creatorcontrib><creatorcontrib>Wamiliana</creatorcontrib><creatorcontrib>Fitriani</creatorcontrib><creatorcontrib>Faisol, A</creatorcontrib><creatorcontrib>Dewi, K S</creatorcontrib><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</description><subject>Apexes</subject><subject>counting graph</subject><subject>disconnected graph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Physics</subject><subject>vertices labelled graph</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3wlySph-7lG1-Medg09uQtidbRtvUpMPtZ_iPTa1OBMHAIYdz3uc98HreOcFXBMdxn0SM9sJgELouIH3Sx4Riyg68zn5zuO_j-Ng7sXaNse9e1PHeR1CDKVSpyiWqV4CmmyIBg7REI2VTXZaQ1pChFzC1SsGiiUggd4NbI6qVbXRPJnPAXG3Rm6pXnyaPYquKTfFttniDst6hmTAizyFH42zpnESZoaEua9Een2o00bqyp96RFLmFs6-_6z3fjBfDu97k6fZ-eD3ppTRirJclgU9jFoUZwxnEmMowSgFiCQRkGgYyiXEgqR9RSEPsKhJAWOKHyYAmjvC73kXrWxn9ugFb87XemNKd5DQgPsEsZNipolaVGm2tAckrowphdpxg3uTPm2R5kzJv8ueEt_k70m9Jpasf6_-pyz-oh9lw_lvIq0z6H6HSlog</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Putri, D</creator><creator>Wamiliana</creator><creator>Fitriani</creator><creator>Faisol, A</creator><creator>Dewi, K S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><author>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-db5328476d40de802f67cee8fe1efc65fb805f2372ec60ec67ae14b36b92b0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>counting graph</topic><topic>disconnected graph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Physics</topic><topic>vertices labelled graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putri, D</creatorcontrib><creatorcontrib>Wamiliana</creatorcontrib><creatorcontrib>Fitriani</creatorcontrib><creatorcontrib>Faisol, A</creatorcontrib><creatorcontrib>Dewi, K S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putri, D</au><au>Wamiliana</au><au>Fitriani</au><au>Faisol, A</au><au>Dewi, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1751</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1751/1/012024</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-01, Vol.1751 (1), p.12024
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2513104640
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Apexes
counting graph
disconnected graph
Graph theory
Graphs
Physics
vertices labelled graph
title Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Number%20of%20Disconnected%20Vertices%20Labeled%20Graphs%20of%20Order%20Six%20with%20the%20Maximum%20Number%20Twenty%20Parallel%20Edges%20and%20Containing%20No%20Loops&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Putri,%20D&rft.date=2021-01-01&rft.volume=1751&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1751/1/012024&rft_dat=%3Cproquest_iop_j%3E2513104640%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513104640&rft_id=info:pmid/&rfr_iscdi=true