Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops
If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-01, Vol.1751 (1), p.12024 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12024 |
container_title | Journal of physics. Conference series |
container_volume | 1751 |
creator | Putri, D Wamiliana Fitriani Faisol, A Dewi, K S |
description | If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one). |
doi_str_mv | 10.1088/1742-6596/1751/1/012024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2513104640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513104640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2744-db5328476d40de802f67cee8fe1efc65fb805f2372ec60ec67ae14b36b92b0de3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3wlySph-7lG1-Medg09uQtidbRtvUpMPtZ_iPTa1OBMHAIYdz3uc98HreOcFXBMdxn0SM9sJgELouIH3Sx4Riyg68zn5zuO_j-Ng7sXaNse9e1PHeR1CDKVSpyiWqV4CmmyIBg7REI2VTXZaQ1pChFzC1SsGiiUggd4NbI6qVbXRPJnPAXG3Rm6pXnyaPYquKTfFttniDst6hmTAizyFH42zpnESZoaEua9Een2o00bqyp96RFLmFs6-_6z3fjBfDu97k6fZ-eD3ppTRirJclgU9jFoUZwxnEmMowSgFiCQRkGgYyiXEgqR9RSEPsKhJAWOKHyYAmjvC73kXrWxn9ugFb87XemNKd5DQgPsEsZNipolaVGm2tAckrowphdpxg3uTPm2R5kzJv8ueEt_k70m9Jpasf6_-pyz-oh9lw_lvIq0z6H6HSlog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513104640</pqid></control><display><type>article</type><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</creator><creatorcontrib>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</creatorcontrib><description>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1751/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Apexes ; counting graph ; disconnected graph ; Graph theory ; Graphs ; Physics ; vertices labelled graph</subject><ispartof>Journal of physics. Conference series, 2021-01, Vol.1751 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1751/1/012024/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Putri, D</creatorcontrib><creatorcontrib>Wamiliana</creatorcontrib><creatorcontrib>Fitriani</creatorcontrib><creatorcontrib>Faisol, A</creatorcontrib><creatorcontrib>Dewi, K S</creatorcontrib><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</description><subject>Apexes</subject><subject>counting graph</subject><subject>disconnected graph</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Physics</subject><subject>vertices labelled graph</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3wlySph-7lG1-Medg09uQtidbRtvUpMPtZ_iPTa1OBMHAIYdz3uc98HreOcFXBMdxn0SM9sJgELouIH3Sx4Riyg68zn5zuO_j-Ng7sXaNse9e1PHeR1CDKVSpyiWqV4CmmyIBg7REI2VTXZaQ1pChFzC1SsGiiUggd4NbI6qVbXRPJnPAXG3Rm6pXnyaPYquKTfFttniDst6hmTAizyFH42zpnESZoaEua9Een2o00bqyp96RFLmFs6-_6z3fjBfDu97k6fZ-eD3ppTRirJclgU9jFoUZwxnEmMowSgFiCQRkGgYyiXEgqR9RSEPsKhJAWOKHyYAmjvC73kXrWxn9ugFb87XemNKd5DQgPsEsZNipolaVGm2tAckrowphdpxg3uTPm2R5kzJv8ueEt_k70m9Jpasf6_-pyz-oh9lw_lvIq0z6H6HSlog</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Putri, D</creator><creator>Wamiliana</creator><creator>Fitriani</creator><creator>Faisol, A</creator><creator>Dewi, K S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</title><author>Putri, D ; Wamiliana ; Fitriani ; Faisol, A ; Dewi, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2744-db5328476d40de802f67cee8fe1efc65fb805f2372ec60ec67ae14b36b92b0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>counting graph</topic><topic>disconnected graph</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Physics</topic><topic>vertices labelled graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putri, D</creatorcontrib><creatorcontrib>Wamiliana</creatorcontrib><creatorcontrib>Fitriani</creatorcontrib><creatorcontrib>Faisol, A</creatorcontrib><creatorcontrib>Dewi, K S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putri, D</au><au>Wamiliana</au><au>Fitriani</au><au>Faisol, A</au><au>Dewi, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1751</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>If there exist two vertices on a given graph that are not connected by a path, then we call that graph is disconnected. Given a graph with n vertices and m edges, then a lot of graphs can be constructed. In this paper, we discuss the number of disconnected vertices labeled graphs of order six (n = 6) with the maximum number of parallel edges is twenty. Moreover, a maximum number of edges that connect different pair of vertices is ten (parallel edges are counted as one) and containing no loops (isomorphic graphs are counted as one).</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1751/1/012024</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-01, Vol.1751 (1), p.12024 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2513104640 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Apexes counting graph disconnected graph Graph theory Graphs Physics vertices labelled graph |
title | Determining the Number of Disconnected Vertices Labeled Graphs of Order Six with the Maximum Number Twenty Parallel Edges and Containing No Loops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20Number%20of%20Disconnected%20Vertices%20Labeled%20Graphs%20of%20Order%20Six%20with%20the%20Maximum%20Number%20Twenty%20Parallel%20Edges%20and%20Containing%20No%20Loops&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Putri,%20D&rft.date=2021-01-01&rft.volume=1751&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1751/1/012024&rft_dat=%3Cproquest_iop_j%3E2513104640%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513104640&rft_id=info:pmid/&rfr_iscdi=true |