Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters
We use Δ SYM-H to capture the variation in the SYM-H index during the main phase of a geomagnetic storm. We define great geomagnetic storms as those with Δ SYM-H ≤ − 200 nT. After analyzing the data that were not obscured by solar winds, we determined that 17 such storms occurred during Solar Cycle...
Gespeichert in:
Veröffentlicht in: | Solar physics 2021-04, Vol.296 (4), Article 66 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Solar physics |
container_volume | 296 |
creator | Zhao, Ming-Xian Le, Gui-Ming Li, Qi Liu, Gui-Ang Mao, Tian |
description | We use
Δ
SYM-H to capture the variation in the SYM-H index during the main phase of a geomagnetic storm. We define great geomagnetic storms as those with
Δ
SYM-H
≤
−
200
nT. After analyzing the data that were not obscured by solar winds, we determined that 17 such storms occurred during Solar Cycles 23 and 24. We calculated time integrals for the southward interplanetary magnetic field component
I
(
B
s
)
, the solar wind electric field
I
(
E
y
)
, and a combination of
E
y
and the solar wind dynamic pressure
I
(
Q
)
during the main phase of a great geomagnetic storm. The strength of the correlation coefficient (CC) between
Δ
SYM-H and each of the three integrals
I
(
B
s
)
(CC = 0.73),
I
(
E
y
)
(CC = 0.86), and
I
(
Q
)
(CC = 0.94) suggests that
Q
, which encompasses both the solar wind electric field and the solar wind dynamic pressure is the main driving factor that determines the intensity of a great geomagnetic storm. The results also suggest that the impact of
B
s
on the great geomagnetic storm intensity is much more significant than that of the solar wind speed and the dynamic pressure during the main phase of an associated great geomagnetic storm. The better estimation of the intensity of an extreme geomagnetic storm intensity based on solar wind parameters is also discussed. |
doi_str_mv | 10.1007/s11207-021-01816-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513080865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513080865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c5ededec62a47cfa65a4740d9a5857cca446d9818f81777aff782422b2bf90813</originalsourceid><addsrcrecordid>eNp9kE9KAzEUh4MoWKsXcBVwo4voS2YyySyLf1qhotCKugppJlOmtElNpgtvoFvxCJ7HQ_QkTh3BnbzF7y1-33vwIXRI4ZQCiLNIKQNBgFECVNKMsC3UoVwkBPLkcRt1ABK52eUu2otxBrDBeAepC7u0rrDOWOxL3A9W17hv_UJPna0rg0e1Dwt8_PUxerohg_Xb5_r1nQFgNz7B3uFejN5UurYFHvm5DvihcgW-00EvbG1D3Ec7pZ5He_CbXXR_dTk-H5Dhbf_6vDckJqF5TQy3RTMmYzoVptQZbzKFItdccmGMTtOsyCWVpaRCCF2WQrKUsQmblDlImnTRUXt3GfzzysZazfwquOalYpwmIEFmvGmxtmWCjzHYUi1DtdDhRVFQGyOqFakakepHpGINlLRQbMpuasPf6X-ob5OZdsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513080865</pqid></control><display><type>article</type><title>Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhao, Ming-Xian ; Le, Gui-Ming ; Li, Qi ; Liu, Gui-Ang ; Mao, Tian</creator><creatorcontrib>Zhao, Ming-Xian ; Le, Gui-Ming ; Li, Qi ; Liu, Gui-Ang ; Mao, Tian</creatorcontrib><description>We use
Δ
SYM-H to capture the variation in the SYM-H index during the main phase of a geomagnetic storm. We define great geomagnetic storms as those with
Δ
SYM-H
≤
−
200
nT. After analyzing the data that were not obscured by solar winds, we determined that 17 such storms occurred during Solar Cycles 23 and 24. We calculated time integrals for the southward interplanetary magnetic field component
I
(
B
s
)
, the solar wind electric field
I
(
E
y
)
, and a combination of
E
y
and the solar wind dynamic pressure
I
(
Q
)
during the main phase of a great geomagnetic storm. The strength of the correlation coefficient (CC) between
Δ
SYM-H and each of the three integrals
I
(
B
s
)
(CC = 0.73),
I
(
E
y
)
(CC = 0.86), and
I
(
Q
)
(CC = 0.94) suggests that
Q
, which encompasses both the solar wind electric field and the solar wind dynamic pressure is the main driving factor that determines the intensity of a great geomagnetic storm. The results also suggest that the impact of
B
s
on the great geomagnetic storm intensity is much more significant than that of the solar wind speed and the dynamic pressure during the main phase of an associated great geomagnetic storm. The better estimation of the intensity of an extreme geomagnetic storm intensity based on solar wind parameters is also discussed.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-021-01816-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Charged particles ; Correlation coefficient ; Correlation coefficients ; Dynamic pressure ; Electric fields ; Extreme weather ; Geomagnetic storms ; Geomagnetism ; Integrals ; Interplanetary magnetic field ; Magnetic fields ; Magnetic storms ; Magnetism ; Mathematical analysis ; Parameters ; Physics ; Physics and Astronomy ; Saturn ; Solar cycle ; Solar magnetic field ; Solar physics ; Solar wind ; Solar wind dynamics ; Solar wind electric fields ; Solar wind parameters ; Solar wind velocity ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Storms ; Wind ; Wind speed</subject><ispartof>Solar physics, 2021-04, Vol.296 (4), Article 66</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c5ededec62a47cfa65a4740d9a5857cca446d9818f81777aff782422b2bf90813</citedby><cites>FETCH-LOGICAL-c319t-c5ededec62a47cfa65a4740d9a5857cca446d9818f81777aff782422b2bf90813</cites><orcidid>0000-0002-9906-5132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-021-01816-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-021-01816-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Ming-Xian</creatorcontrib><creatorcontrib>Le, Gui-Ming</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Gui-Ang</creatorcontrib><creatorcontrib>Mao, Tian</creatorcontrib><title>Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>We use
Δ
SYM-H to capture the variation in the SYM-H index during the main phase of a geomagnetic storm. We define great geomagnetic storms as those with
Δ
SYM-H
≤
−
200
nT. After analyzing the data that were not obscured by solar winds, we determined that 17 such storms occurred during Solar Cycles 23 and 24. We calculated time integrals for the southward interplanetary magnetic field component
I
(
B
s
)
, the solar wind electric field
I
(
E
y
)
, and a combination of
E
y
and the solar wind dynamic pressure
I
(
Q
)
during the main phase of a great geomagnetic storm. The strength of the correlation coefficient (CC) between
Δ
SYM-H and each of the three integrals
I
(
B
s
)
(CC = 0.73),
I
(
E
y
)
(CC = 0.86), and
I
(
Q
)
(CC = 0.94) suggests that
Q
, which encompasses both the solar wind electric field and the solar wind dynamic pressure is the main driving factor that determines the intensity of a great geomagnetic storm. The results also suggest that the impact of
B
s
on the great geomagnetic storm intensity is much more significant than that of the solar wind speed and the dynamic pressure during the main phase of an associated great geomagnetic storm. The better estimation of the intensity of an extreme geomagnetic storm intensity based on solar wind parameters is also discussed.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Charged particles</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dynamic pressure</subject><subject>Electric fields</subject><subject>Extreme weather</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Integrals</subject><subject>Interplanetary magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic storms</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Saturn</subject><subject>Solar cycle</subject><subject>Solar magnetic field</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Solar wind dynamics</subject><subject>Solar wind electric fields</subject><subject>Solar wind parameters</subject><subject>Solar wind velocity</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Storms</subject><subject>Wind</subject><subject>Wind speed</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9KAzEUh4MoWKsXcBVwo4voS2YyySyLf1qhotCKugppJlOmtElNpgtvoFvxCJ7HQ_QkTh3BnbzF7y1-33vwIXRI4ZQCiLNIKQNBgFECVNKMsC3UoVwkBPLkcRt1ABK52eUu2otxBrDBeAepC7u0rrDOWOxL3A9W17hv_UJPna0rg0e1Dwt8_PUxerohg_Xb5_r1nQFgNz7B3uFejN5UurYFHvm5DvihcgW-00EvbG1D3Ec7pZ5He_CbXXR_dTk-H5Dhbf_6vDckJqF5TQy3RTMmYzoVptQZbzKFItdccmGMTtOsyCWVpaRCCF2WQrKUsQmblDlImnTRUXt3GfzzysZazfwquOalYpwmIEFmvGmxtmWCjzHYUi1DtdDhRVFQGyOqFakakepHpGINlLRQbMpuasPf6X-ob5OZdsg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Ming-Xian</creator><creator>Le, Gui-Ming</creator><creator>Li, Qi</creator><creator>Liu, Gui-Ang</creator><creator>Mao, Tian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9906-5132</orcidid></search><sort><creationdate>20210401</creationdate><title>Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters</title><author>Zhao, Ming-Xian ; Le, Gui-Ming ; Li, Qi ; Liu, Gui-Ang ; Mao, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c5ededec62a47cfa65a4740d9a5857cca446d9818f81777aff782422b2bf90813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Charged particles</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dynamic pressure</topic><topic>Electric fields</topic><topic>Extreme weather</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Integrals</topic><topic>Interplanetary magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic storms</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Saturn</topic><topic>Solar cycle</topic><topic>Solar magnetic field</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Solar wind dynamics</topic><topic>Solar wind electric fields</topic><topic>Solar wind parameters</topic><topic>Solar wind velocity</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Storms</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ming-Xian</creatorcontrib><creatorcontrib>Le, Gui-Ming</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Liu, Gui-Ang</creatorcontrib><creatorcontrib>Mao, Tian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ming-Xian</au><au>Le, Gui-Ming</au><au>Li, Qi</au><au>Liu, Gui-Ang</au><au>Mao, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>296</volume><issue>4</issue><artnum>66</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>We use
Δ
SYM-H to capture the variation in the SYM-H index during the main phase of a geomagnetic storm. We define great geomagnetic storms as those with
Δ
SYM-H
≤
−
200
nT. After analyzing the data that were not obscured by solar winds, we determined that 17 such storms occurred during Solar Cycles 23 and 24. We calculated time integrals for the southward interplanetary magnetic field component
I
(
B
s
)
, the solar wind electric field
I
(
E
y
)
, and a combination of
E
y
and the solar wind dynamic pressure
I
(
Q
)
during the main phase of a great geomagnetic storm. The strength of the correlation coefficient (CC) between
Δ
SYM-H and each of the three integrals
I
(
B
s
)
(CC = 0.73),
I
(
E
y
)
(CC = 0.86), and
I
(
Q
)
(CC = 0.94) suggests that
Q
, which encompasses both the solar wind electric field and the solar wind dynamic pressure is the main driving factor that determines the intensity of a great geomagnetic storm. The results also suggest that the impact of
B
s
on the great geomagnetic storm intensity is much more significant than that of the solar wind speed and the dynamic pressure during the main phase of an associated great geomagnetic storm. The better estimation of the intensity of an extreme geomagnetic storm intensity based on solar wind parameters is also discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-021-01816-2</doi><orcidid>https://orcid.org/0000-0002-9906-5132</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2021-04, Vol.296 (4), Article 66 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_journals_2513080865 |
source | Springer Nature - Complete Springer Journals |
subjects | Astrophysics and Astroparticles Atmospheric Sciences Charged particles Correlation coefficient Correlation coefficients Dynamic pressure Electric fields Extreme weather Geomagnetic storms Geomagnetism Integrals Interplanetary magnetic field Magnetic fields Magnetic storms Magnetism Mathematical analysis Parameters Physics Physics and Astronomy Saturn Solar cycle Solar magnetic field Solar physics Solar wind Solar wind dynamics Solar wind electric fields Solar wind parameters Solar wind velocity Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Storms Wind Wind speed |
title | Dependence of Great Geomagnetic Storm (ΔSYM-H≤−200 nT) on Associated Solar Wind Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20of%20Great%20Geomagnetic%20Storm%20(%CE%94SYM-H%E2%89%A4%E2%88%92200%20nT)%20on%20Associated%20Solar%20Wind%20Parameters&rft.jtitle=Solar%20physics&rft.au=Zhao,%20Ming-Xian&rft.date=2021-04-01&rft.volume=296&rft.issue=4&rft.artnum=66&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-021-01816-2&rft_dat=%3Cproquest_cross%3E2513080865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513080865&rft_id=info:pmid/&rfr_iscdi=true |