Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression
The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy...
Gespeichert in:
Veröffentlicht in: | Materials research express 2021-01, Vol.8 (1), p.16531 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 16531 |
container_title | Materials research express |
container_volume | 8 |
creator | Wang, Andong Mao, Yongquan Chen, Caifeng Zhang, Luxiang Ni, Lei |
description | The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands. |
doi_str_mv | 10.1088/2053-1591/abdabf |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513070696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_541f1b7ea805411590c0ab4ad722edc4</doaj_id><sourcerecordid>2513070696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</originalsourceid><addsrcrecordid>eNp9kcFrFTEQxhdRsNTePQYET67NJNnN7lGKtoWCl3oOk2TSl8fbzZrsE-tfb54r1YN4mmHm-34J3zTNa-DvgQ_DpeCdbKEb4RKtRxueNWdPo-d_9S-bi1L2nHOhR9mJ_qzBm7QyTyHlCdeYZmZph99iOubCcPasLDvKKfr4Y1tP5HY4xzIVlgK7j20nhWB4OKRH5o85zg9sV4kuTUumUqrlVfMi4KHQxe963nz59PH-6qa9-3x9e_XhrnVK6bW1vQphICUARtePSo69Au_RQzeMBELL4CR4hdIrbq0XWntBA2kigdyiPG9uN65PuDdLjhPmR5Mwml-DlB8M5jW6A5lOQQCrCQde2xoMdxytQq-FIO9UZb3ZWEtOX49UVrOvicz1-0Z0ILnm_dhXFd9ULqdSMoWnV4Gb013MKXhzCt5sd6mWd5slpuUP8z_yt_-QT_m7GQwYDn0nwSw-yJ80G5z2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513070696</pqid></control><display><type>article</type><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</creator><creatorcontrib>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</creatorcontrib><description>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/abdabf</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Beta phase ; constitutive modes ; Deformation ; Dynamic recrystallization ; Edge dislocations ; Grain sub boundaries ; hot deformation ; Hot pressing ; Hot workability ; Interface stability ; Microstructure ; Optimization ; Phase transitions ; Process mapping ; Process parameters ; processing map ; Shear bands ; spheroidization ; Spheroidizing ; Strain rate ; titanium alloy ; Titanium base alloys</subject><ispartof>Materials research express, 2021-01, Vol.8 (1), p.16531</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</citedby><cites>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</cites><orcidid>0000-0002-0093-604X ; 0000-0001-9446-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/abdabf/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,27926,27927,38870,38892,53842,53869</link.rule.ids></links><search><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Mao, Yongquan</creatorcontrib><creatorcontrib>Chen, Caifeng</creatorcontrib><creatorcontrib>Zhang, Luxiang</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</description><subject>Beta phase</subject><subject>constitutive modes</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Edge dislocations</subject><subject>Grain sub boundaries</subject><subject>hot deformation</subject><subject>Hot pressing</subject><subject>Hot workability</subject><subject>Interface stability</subject><subject>Microstructure</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>processing map</subject><subject>Shear bands</subject><subject>spheroidization</subject><subject>Spheroidizing</subject><subject>Strain rate</subject><subject>titanium alloy</subject><subject>Titanium base alloys</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFrFTEQxhdRsNTePQYET67NJNnN7lGKtoWCl3oOk2TSl8fbzZrsE-tfb54r1YN4mmHm-34J3zTNa-DvgQ_DpeCdbKEb4RKtRxueNWdPo-d_9S-bi1L2nHOhR9mJ_qzBm7QyTyHlCdeYZmZph99iOubCcPasLDvKKfr4Y1tP5HY4xzIVlgK7j20nhWB4OKRH5o85zg9sV4kuTUumUqrlVfMi4KHQxe963nz59PH-6qa9-3x9e_XhrnVK6bW1vQphICUARtePSo69Au_RQzeMBELL4CR4hdIrbq0XWntBA2kigdyiPG9uN65PuDdLjhPmR5Mwml-DlB8M5jW6A5lOQQCrCQde2xoMdxytQq-FIO9UZb3ZWEtOX49UVrOvicz1-0Z0ILnm_dhXFd9ULqdSMoWnV4Gb013MKXhzCt5sd6mWd5slpuUP8z_yt_-QT_m7GQwYDn0nwSw-yJ80G5z2</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Andong</creator><creator>Mao, Yongquan</creator><creator>Chen, Caifeng</creator><creator>Zhang, Luxiang</creator><creator>Ni, Lei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0093-604X</orcidid><orcidid>https://orcid.org/0000-0001-9446-1294</orcidid></search><sort><creationdate>20210101</creationdate><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><author>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beta phase</topic><topic>constitutive modes</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Edge dislocations</topic><topic>Grain sub boundaries</topic><topic>hot deformation</topic><topic>Hot pressing</topic><topic>Hot workability</topic><topic>Interface stability</topic><topic>Microstructure</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>processing map</topic><topic>Shear bands</topic><topic>spheroidization</topic><topic>Spheroidizing</topic><topic>Strain rate</topic><topic>titanium alloy</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Mao, Yongquan</creatorcontrib><creatorcontrib>Chen, Caifeng</creatorcontrib><creatorcontrib>Zhang, Luxiang</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Andong</au><au>Mao, Yongquan</au><au>Chen, Caifeng</au><au>Zhang, Luxiang</au><au>Ni, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>16531</spage><pages>16531-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/abdabf</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0093-604X</orcidid><orcidid>https://orcid.org/0000-0001-9446-1294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2021-01, Vol.8 (1), p.16531 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_proquest_journals_2513070696 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra |
subjects | Beta phase constitutive modes Deformation Dynamic recrystallization Edge dislocations Grain sub boundaries hot deformation Hot pressing Hot workability Interface stability Microstructure Optimization Phase transitions Process mapping Process parameters processing map Shear bands spheroidization Spheroidizing Strain rate titanium alloy Titanium base alloys |
title | Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20deformation%20behaviours%20and%20spheroidization%20mechanisms%20of%20Ti-5322%20alloy%20during%20hot%20compression&rft.jtitle=Materials%20research%20express&rft.au=Wang,%20Andong&rft.date=2021-01-01&rft.volume=8&rft.issue=1&rft.spage=16531&rft.pages=16531-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/abdabf&rft_dat=%3Cproquest_cross%3E2513070696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513070696&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_541f1b7ea805411590c0ab4ad722edc4&rfr_iscdi=true |