Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression

The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2021-01, Vol.8 (1), p.16531
Hauptverfasser: Wang, Andong, Mao, Yongquan, Chen, Caifeng, Zhang, Luxiang, Ni, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 16531
container_title Materials research express
container_volume 8
creator Wang, Andong
Mao, Yongquan
Chen, Caifeng
Zhang, Luxiang
Ni, Lei
description The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.
doi_str_mv 10.1088/2053-1591/abdabf
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2513070696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_541f1b7ea805411590c0ab4ad722edc4</doaj_id><sourcerecordid>2513070696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</originalsourceid><addsrcrecordid>eNp9kcFrFTEQxhdRsNTePQYET67NJNnN7lGKtoWCl3oOk2TSl8fbzZrsE-tfb54r1YN4mmHm-34J3zTNa-DvgQ_DpeCdbKEb4RKtRxueNWdPo-d_9S-bi1L2nHOhR9mJ_qzBm7QyTyHlCdeYZmZph99iOubCcPasLDvKKfr4Y1tP5HY4xzIVlgK7j20nhWB4OKRH5o85zg9sV4kuTUumUqrlVfMi4KHQxe963nz59PH-6qa9-3x9e_XhrnVK6bW1vQphICUARtePSo69Au_RQzeMBELL4CR4hdIrbq0XWntBA2kigdyiPG9uN65PuDdLjhPmR5Mwml-DlB8M5jW6A5lOQQCrCQde2xoMdxytQq-FIO9UZb3ZWEtOX49UVrOvicz1-0Z0ILnm_dhXFd9ULqdSMoWnV4Gb013MKXhzCt5sd6mWd5slpuUP8z_yt_-QT_m7GQwYDn0nwSw-yJ80G5z2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513070696</pqid></control><display><type>article</type><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</creator><creatorcontrib>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</creatorcontrib><description>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/abdabf</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Beta phase ; constitutive modes ; Deformation ; Dynamic recrystallization ; Edge dislocations ; Grain sub boundaries ; hot deformation ; Hot pressing ; Hot workability ; Interface stability ; Microstructure ; Optimization ; Phase transitions ; Process mapping ; Process parameters ; processing map ; Shear bands ; spheroidization ; Spheroidizing ; Strain rate ; titanium alloy ; Titanium base alloys</subject><ispartof>Materials research express, 2021-01, Vol.8 (1), p.16531</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</citedby><cites>FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</cites><orcidid>0000-0002-0093-604X ; 0000-0001-9446-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/abdabf/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,27926,27927,38870,38892,53842,53869</link.rule.ids></links><search><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Mao, Yongquan</creatorcontrib><creatorcontrib>Chen, Caifeng</creatorcontrib><creatorcontrib>Zhang, Luxiang</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</description><subject>Beta phase</subject><subject>constitutive modes</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Edge dislocations</subject><subject>Grain sub boundaries</subject><subject>hot deformation</subject><subject>Hot pressing</subject><subject>Hot workability</subject><subject>Interface stability</subject><subject>Microstructure</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>processing map</subject><subject>Shear bands</subject><subject>spheroidization</subject><subject>Spheroidizing</subject><subject>Strain rate</subject><subject>titanium alloy</subject><subject>Titanium base alloys</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kcFrFTEQxhdRsNTePQYET67NJNnN7lGKtoWCl3oOk2TSl8fbzZrsE-tfb54r1YN4mmHm-34J3zTNa-DvgQ_DpeCdbKEb4RKtRxueNWdPo-d_9S-bi1L2nHOhR9mJ_qzBm7QyTyHlCdeYZmZph99iOubCcPasLDvKKfr4Y1tP5HY4xzIVlgK7j20nhWB4OKRH5o85zg9sV4kuTUumUqrlVfMi4KHQxe963nz59PH-6qa9-3x9e_XhrnVK6bW1vQphICUARtePSo69Au_RQzeMBELL4CR4hdIrbq0XWntBA2kigdyiPG9uN65PuDdLjhPmR5Mwml-DlB8M5jW6A5lOQQCrCQde2xoMdxytQq-FIO9UZb3ZWEtOX49UVrOvicz1-0Z0ILnm_dhXFd9ULqdSMoWnV4Gb013MKXhzCt5sd6mWd5slpuUP8z_yt_-QT_m7GQwYDn0nwSw-yJ80G5z2</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Andong</creator><creator>Mao, Yongquan</creator><creator>Chen, Caifeng</creator><creator>Zhang, Luxiang</creator><creator>Ni, Lei</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0093-604X</orcidid><orcidid>https://orcid.org/0000-0001-9446-1294</orcidid></search><sort><creationdate>20210101</creationdate><title>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</title><author>Wang, Andong ; Mao, Yongquan ; Chen, Caifeng ; Zhang, Luxiang ; Ni, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b64ff8e42119c69439641ddad1589e1273fc31d4a3d40bbd277d2e8e7ee2a0ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beta phase</topic><topic>constitutive modes</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Edge dislocations</topic><topic>Grain sub boundaries</topic><topic>hot deformation</topic><topic>Hot pressing</topic><topic>Hot workability</topic><topic>Interface stability</topic><topic>Microstructure</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>processing map</topic><topic>Shear bands</topic><topic>spheroidization</topic><topic>Spheroidizing</topic><topic>Strain rate</topic><topic>titanium alloy</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Mao, Yongquan</creatorcontrib><creatorcontrib>Chen, Caifeng</creatorcontrib><creatorcontrib>Zhang, Luxiang</creatorcontrib><creatorcontrib>Ni, Lei</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Andong</au><au>Mao, Yongquan</au><au>Chen, Caifeng</au><au>Zhang, Luxiang</au><au>Ni, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>16531</spage><pages>16531-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The hot deformation behavior of Ti-5322 alloy are researched at compression temperatures range of 750-1050 °C and strain rate range of 0.01-10 s−1, to optimize its hot workability. Processing map analysis and microstructure observations reveal that the optimal processing parameters of Ti-5322 alloy are temperatures of 750-825 °C and strain rates of 0.01-0.05 s−1, and temperatures of 925-975 °C and strain rates of 0.01-1 s−1. The peak efficiency of power dissipation can reach 40% owing to the transformation from phase to β phase, spheroidization behavior and dynamic recrystallization of the β phase. The dynamic recrystallization was the primary form of microstructure evolution above 900 °C, while the spheroidization of phase below 900 °C. The spheroidization of lamellae can be attributed to the instability of subgrain boundaries appeared in the phase during hot deformation. The β phase wadges into the / subgrain boundary and /β interface migration induced the phase spheroidization. In addition, three instability domains are detected in the processing maps, which confirmed by the presence of microstructures with wedge cracking and adiabatic shear bands.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/abdabf</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0093-604X</orcidid><orcidid>https://orcid.org/0000-0001-9446-1294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2021-01, Vol.8 (1), p.16531
issn 2053-1591
2053-1591
language eng
recordid cdi_proquest_journals_2513070696
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra
subjects Beta phase
constitutive modes
Deformation
Dynamic recrystallization
Edge dislocations
Grain sub boundaries
hot deformation
Hot pressing
Hot workability
Interface stability
Microstructure
Optimization
Phase transitions
Process mapping
Process parameters
processing map
Shear bands
spheroidization
Spheroidizing
Strain rate
titanium alloy
Titanium base alloys
title Hot deformation behaviours and spheroidization mechanisms of Ti-5322 alloy during hot compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20deformation%20behaviours%20and%20spheroidization%20mechanisms%20of%20Ti-5322%20alloy%20during%20hot%20compression&rft.jtitle=Materials%20research%20express&rft.au=Wang,%20Andong&rft.date=2021-01-01&rft.volume=8&rft.issue=1&rft.spage=16531&rft.pages=16531-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/abdabf&rft_dat=%3Cproquest_cross%3E2513070696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513070696&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_541f1b7ea805411590c0ab4ad722edc4&rfr_iscdi=true