Innovative design of traditional calligraphy costume patterns based on deep learning

With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-02, Vol.1790 (1), p.12029
Hauptverfasser: Han, Chen, Lei, Shen, Mingming, Wang, Xiangfang, Ren, Xiying, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12029
container_title Journal of physics. Conference series
container_volume 1790
creator Han, Chen
Lei, Shen
Mingming, Wang
Xiangfang, Ren
Xiying, Zhang
description With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.
doi_str_mv 10.1088/1742-6596/1790/1/012029
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2512981483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512981483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Ql1OP5L0UoYfk4GC8zqkSTozuqYm3WD_3pSKIgjmJoec5z05PAhdArkBwvkMWJ4mtChprEoygxmBlKTlEZp8d46_a85P0VkIG0KyeNgErRZt6_ayt3uDtQl23WJX495LbXvrWtlgJZvGrr3s3g9YudDvtgZ3su-NbwOuZDAauzZmTYcbI31r2_U5OqllE8zF1z1Fb_d3q_ljsnx-WMxvl4nKGC2TumJKSVrUOdSUF4WSKgVNNdM1A5JRXekKihRUfFIFMMMg4wZUDlVFuWLZFF2NczvvPnYm9GLjdj4uHURaQFpyyHkWKTZSyrsQvKlF5-1W-oMAIgaFYpAjBlFiUChAjApj8npMWtf9jH56mb_-BkWn6whnf8D_ffEJmZKBtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512981483</pqid></control><display><type>article</type><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</creator><creatorcontrib>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</creatorcontrib><description>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1790/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calligraphy ; Cost analysis ; Costumes ; Culture ; Deep learning ; Design optimization ; Globalization ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-02, Vol.1790 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</citedby><cites>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1790/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27915,27916,38859,38881,53831,53858</link.rule.ids></links><search><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Lei, Shen</creatorcontrib><creatorcontrib>Mingming, Wang</creatorcontrib><creatorcontrib>Xiangfang, Ren</creatorcontrib><creatorcontrib>Xiying, Zhang</creatorcontrib><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</description><subject>Calligraphy</subject><subject>Cost analysis</subject><subject>Costumes</subject><subject>Culture</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Globalization</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Ql1OP5L0UoYfk4GC8zqkSTozuqYm3WD_3pSKIgjmJoec5z05PAhdArkBwvkMWJ4mtChprEoygxmBlKTlEZp8d46_a85P0VkIG0KyeNgErRZt6_ayt3uDtQl23WJX495LbXvrWtlgJZvGrr3s3g9YudDvtgZ3su-NbwOuZDAauzZmTYcbI31r2_U5OqllE8zF1z1Fb_d3q_ljsnx-WMxvl4nKGC2TumJKSVrUOdSUF4WSKgVNNdM1A5JRXekKihRUfFIFMMMg4wZUDlVFuWLZFF2NczvvPnYm9GLjdj4uHURaQFpyyHkWKTZSyrsQvKlF5-1W-oMAIgaFYpAjBlFiUChAjApj8npMWtf9jH56mb_-BkWn6whnf8D_ffEJmZKBtQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Han, Chen</creator><creator>Lei, Shen</creator><creator>Mingming, Wang</creator><creator>Xiangfang, Ren</creator><creator>Xiying, Zhang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><author>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calligraphy</topic><topic>Cost analysis</topic><topic>Costumes</topic><topic>Culture</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Globalization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Lei, Shen</creatorcontrib><creatorcontrib>Mingming, Wang</creatorcontrib><creatorcontrib>Xiangfang, Ren</creatorcontrib><creatorcontrib>Xiying, Zhang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Chen</au><au>Lei, Shen</au><au>Mingming, Wang</au><au>Xiangfang, Ren</au><au>Xiying, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative design of traditional calligraphy costume patterns based on deep learning</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>1790</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1790/1/012029</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-02, Vol.1790 (1), p.12029
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512981483
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Calligraphy
Cost analysis
Costumes
Culture
Deep learning
Design optimization
Globalization
Physics
title Innovative design of traditional calligraphy costume patterns based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20design%20of%20traditional%20calligraphy%20costume%20patterns%20based%20on%20deep%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Han,%20Chen&rft.date=2021-02-01&rft.volume=1790&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1790/1/012029&rft_dat=%3Cproquest_iop_j%3E2512981483%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512981483&rft_id=info:pmid/&rfr_iscdi=true