Innovative design of traditional calligraphy costume patterns based on deep learning
With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture a...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-02, Vol.1790 (1), p.12029 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12029 |
container_title | Journal of physics. Conference series |
container_volume | 1790 |
creator | Han, Chen Lei, Shen Mingming, Wang Xiangfang, Ren Xiying, Zhang |
description | With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts. |
doi_str_mv | 10.1088/1742-6596/1790/1/012029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2512981483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512981483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYB3Ql1OP5L0UoYfk4GC8zqkSTozuqYm3WD_3pSKIgjmJoec5z05PAhdArkBwvkMWJ4mtChprEoygxmBlKTlEZp8d46_a85P0VkIG0KyeNgErRZt6_ayt3uDtQl23WJX495LbXvrWtlgJZvGrr3s3g9YudDvtgZ3su-NbwOuZDAauzZmTYcbI31r2_U5OqllE8zF1z1Fb_d3q_ljsnx-WMxvl4nKGC2TumJKSVrUOdSUF4WSKgVNNdM1A5JRXekKihRUfFIFMMMg4wZUDlVFuWLZFF2NczvvPnYm9GLjdj4uHURaQFpyyHkWKTZSyrsQvKlF5-1W-oMAIgaFYpAjBlFiUChAjApj8npMWtf9jH56mb_-BkWn6whnf8D_ffEJmZKBtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512981483</pqid></control><display><type>article</type><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</creator><creatorcontrib>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</creatorcontrib><description>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1790/1/012029</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calligraphy ; Cost analysis ; Costumes ; Culture ; Deep learning ; Design optimization ; Globalization ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-02, Vol.1790 (1), p.12029</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</citedby><cites>FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1790/1/012029/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27915,27916,38859,38881,53831,53858</link.rule.ids></links><search><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Lei, Shen</creatorcontrib><creatorcontrib>Mingming, Wang</creatorcontrib><creatorcontrib>Xiangfang, Ren</creatorcontrib><creatorcontrib>Xiying, Zhang</creatorcontrib><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</description><subject>Calligraphy</subject><subject>Cost analysis</subject><subject>Costumes</subject><subject>Culture</subject><subject>Deep learning</subject><subject>Design optimization</subject><subject>Globalization</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKe_wYB3Ql1OP5L0UoYfk4GC8zqkSTozuqYm3WD_3pSKIgjmJoec5z05PAhdArkBwvkMWJ4mtChprEoygxmBlKTlEZp8d46_a85P0VkIG0KyeNgErRZt6_ayt3uDtQl23WJX495LbXvrWtlgJZvGrr3s3g9YudDvtgZ3su-NbwOuZDAauzZmTYcbI31r2_U5OqllE8zF1z1Fb_d3q_ljsnx-WMxvl4nKGC2TumJKSVrUOdSUF4WSKgVNNdM1A5JRXekKihRUfFIFMMMg4wZUDlVFuWLZFF2NczvvPnYm9GLjdj4uHURaQFpyyHkWKTZSyrsQvKlF5-1W-oMAIgaFYpAjBlFiUChAjApj8npMWtf9jH56mb_-BkWn6whnf8D_ffEJmZKBtQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Han, Chen</creator><creator>Lei, Shen</creator><creator>Mingming, Wang</creator><creator>Xiangfang, Ren</creator><creator>Xiying, Zhang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>Innovative design of traditional calligraphy costume patterns based on deep learning</title><author>Han, Chen ; Lei, Shen ; Mingming, Wang ; Xiangfang, Ren ; Xiying, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3769-fb7cca65f41f6855cac21d6d7df71036dbdb1521c6d7c517e7138e1c41bb68c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calligraphy</topic><topic>Cost analysis</topic><topic>Costumes</topic><topic>Culture</topic><topic>Deep learning</topic><topic>Design optimization</topic><topic>Globalization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Lei, Shen</creatorcontrib><creatorcontrib>Mingming, Wang</creatorcontrib><creatorcontrib>Xiangfang, Ren</creatorcontrib><creatorcontrib>Xiying, Zhang</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Chen</au><au>Lei, Shen</au><au>Mingming, Wang</au><au>Xiangfang, Ren</au><au>Xiying, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative design of traditional calligraphy costume patterns based on deep learning</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>1790</volume><issue>1</issue><spage>12029</spage><pages>12029-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>With the global homogenization of today's costume design, a new design phenomenon is derived, that is, the globalization of regional ethnic traditional costume. Chinese traditional style has become one of the global fashion trends. In order to digitally inherit the traditional costume culture and innovate and upgrade the design process in the costume industry, this paper takes the traditional calligraphy costume patterns as the research object and proposes an innovative design method based on deep learning Generative Adversarial Network. This study analyzes the artistic characteristics and cultural genes of traditional calligraphic costume patterns, establishes a Generative Adversarial Network model containing discrimination and generation modules, and optimizes the design of the model for the characteristics of traditional costume patterns, such as small samples, multiple specifications, and emphasis on meaning rather than form. Through comparative experiment, subjective evaluation and design application, the advanced and practical value of the model are verified. This research aims to provide new ideas and methods for the inheritance and innovation of traditional culture in costume arts.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1790/1/012029</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-02, Vol.1790 (1), p.12029 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512981483 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Calligraphy Cost analysis Costumes Culture Deep learning Design optimization Globalization Physics |
title | Innovative design of traditional calligraphy costume patterns based on deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20design%20of%20traditional%20calligraphy%20costume%20patterns%20based%20on%20deep%20learning&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Han,%20Chen&rft.date=2021-02-01&rft.volume=1790&rft.issue=1&rft.spage=12029&rft.pages=12029-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1790/1/012029&rft_dat=%3Cproquest_iop_j%3E2512981483%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512981483&rft_id=info:pmid/&rfr_iscdi=true |