Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS
The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin compo...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-03, Vol.1802 (2), p.22095 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22095 |
container_title | Journal of physics. Conference series |
container_volume | 1802 |
creator | Zeng, Lingqi |
description | The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer. |
doi_str_mv | 10.1088/1742-6596/1802/2/022095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512963399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512963399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BgOea_NhmuS4LH7B-gHVg6eQpAmbpW3WpIvuwf9uy4pzmBnmfZlhHgAuMbrGSIgS8xtSVExWJRaIlKREhCDJjsDsXzn-74U4BWc5bxCiY_AZ-KkHPQQLfejD4KBrXef6Aepet_scMoweDuvkXGHbmF0DTfweB6EvvnTbQuN0B42ehNjD1-x2TSxcq_O0sn5awPXepNBAG7ttzNOBTg8uBd3CxXP9UZ-DE6_b7C7-6hy8392-LR-K1cv943KxKiyWjBWSUCkd5bIRxlGLiK0s04IRYqTljCHPmjGhilGPiTWNJdhW3mPtjeCc0zm4Ouzdpvi5c3lQm7hL449ZEYaJrOh4YHTxg8ummHNyXm1T6HTaK4zUxFpNFNVEVE2sFVEH1vQXKzpypg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512963399</pqid></control><display><type>article</type><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><source>Open Access: IOP Publishing Free Content</source><source>IOPscience journals</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Zeng, Lingqi</creator><creatorcontrib>Zeng, Lingqi</creatorcontrib><description>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1802/2/022095</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alloying elements ; Box beams ; Box girders ; CAD ; Composite materials ; Computer aided design ; Displacement ; Epoxy resins ; Finite element analysis ; Finite element method ; Hybrid composites ; Mathematical models ; Modules ; Physics ; Polymer matrix composites ; Shape memory alloys ; Transverse loads</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1802 (2), p.22095</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Lingqi</creatorcontrib><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><title>Journal of physics. Conference series</title><description>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</description><subject>Alloying elements</subject><subject>Box beams</subject><subject>Box girders</subject><subject>CAD</subject><subject>Composite materials</subject><subject>Computer aided design</subject><subject>Displacement</subject><subject>Epoxy resins</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hybrid composites</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Physics</subject><subject>Polymer matrix composites</subject><subject>Shape memory alloys</subject><subject>Transverse loads</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1LxDAQhoMouK7-BgOea_NhmuS4LH7B-gHVg6eQpAmbpW3WpIvuwf9uy4pzmBnmfZlhHgAuMbrGSIgS8xtSVExWJRaIlKREhCDJjsDsXzn-74U4BWc5bxCiY_AZ-KkHPQQLfejD4KBrXef6Aepet_scMoweDuvkXGHbmF0DTfweB6EvvnTbQuN0B42ehNjD1-x2TSxcq_O0sn5awPXepNBAG7ttzNOBTg8uBd3CxXP9UZ-DE6_b7C7-6hy8392-LR-K1cv943KxKiyWjBWSUCkd5bIRxlGLiK0s04IRYqTljCHPmjGhilGPiTWNJdhW3mPtjeCc0zm4Ouzdpvi5c3lQm7hL449ZEYaJrOh4YHTxg8ummHNyXm1T6HTaK4zUxFpNFNVEVE2sFVEH1vQXKzpypg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zeng, Lingqi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><author>Zeng, Lingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Box beams</topic><topic>Box girders</topic><topic>CAD</topic><topic>Composite materials</topic><topic>Computer aided design</topic><topic>Displacement</topic><topic>Epoxy resins</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hybrid composites</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Physics</topic><topic>Polymer matrix composites</topic><topic>Shape memory alloys</topic><topic>Transverse loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingqi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1802</volume><issue>2</issue><spage>22095</spage><pages>22095-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1802/2/022095</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-03, Vol.1802 (2), p.22095 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512963399 |
source | Open Access: IOP Publishing Free Content; IOPscience journals; Full-Text Journals in Chemistry (Open access); Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Alloying elements Box beams Box girders CAD Composite materials Computer aided design Displacement Epoxy resins Finite element analysis Finite element method Hybrid composites Mathematical models Modules Physics Polymer matrix composites Shape memory alloys Transverse loads |
title | Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20finite%20element%20analysis%20of%20three-closed%20box%20thin-wall%20beam%20based%20on%20Pseudo-elastic%20SMA%20hybrid%20composite%20material%20ANSYS&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zeng,%20Lingqi&rft.date=2021-03-01&rft.volume=1802&rft.issue=2&rft.spage=22095&rft.pages=22095-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1802/2/022095&rft_dat=%3Cproquest_cross%3E2512963399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512963399&rft_id=info:pmid/&rfr_iscdi=true |