Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS

The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-03, Vol.1802 (2), p.22095
1. Verfasser: Zeng, Lingqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22095
container_title Journal of physics. Conference series
container_volume 1802
creator Zeng, Lingqi
description The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.
doi_str_mv 10.1088/1742-6596/1802/2/022095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512963399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512963399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BgOea_NhmuS4LH7B-gHVg6eQpAmbpW3WpIvuwf9uy4pzmBnmfZlhHgAuMbrGSIgS8xtSVExWJRaIlKREhCDJjsDsXzn-74U4BWc5bxCiY_AZ-KkHPQQLfejD4KBrXef6Aepet_scMoweDuvkXGHbmF0DTfweB6EvvnTbQuN0B42ehNjD1-x2TSxcq_O0sn5awPXepNBAG7ttzNOBTg8uBd3CxXP9UZ-DE6_b7C7-6hy8392-LR-K1cv943KxKiyWjBWSUCkd5bIRxlGLiK0s04IRYqTljCHPmjGhilGPiTWNJdhW3mPtjeCc0zm4Ouzdpvi5c3lQm7hL449ZEYaJrOh4YHTxg8ummHNyXm1T6HTaK4zUxFpNFNVEVE2sFVEH1vQXKzpypg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512963399</pqid></control><display><type>article</type><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><source>Open Access: IOP Publishing Free Content</source><source>IOPscience journals</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Zeng, Lingqi</creator><creatorcontrib>Zeng, Lingqi</creatorcontrib><description>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1802/2/022095</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Alloying elements ; Box beams ; Box girders ; CAD ; Composite materials ; Computer aided design ; Displacement ; Epoxy resins ; Finite element analysis ; Finite element method ; Hybrid composites ; Mathematical models ; Modules ; Physics ; Polymer matrix composites ; Shape memory alloys ; Transverse loads</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1802 (2), p.22095</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zeng, Lingqi</creatorcontrib><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><title>Journal of physics. Conference series</title><description>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</description><subject>Alloying elements</subject><subject>Box beams</subject><subject>Box girders</subject><subject>CAD</subject><subject>Composite materials</subject><subject>Computer aided design</subject><subject>Displacement</subject><subject>Epoxy resins</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hybrid composites</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Physics</subject><subject>Polymer matrix composites</subject><subject>Shape memory alloys</subject><subject>Transverse loads</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE1LxDAQhoMouK7-BgOea_NhmuS4LH7B-gHVg6eQpAmbpW3WpIvuwf9uy4pzmBnmfZlhHgAuMbrGSIgS8xtSVExWJRaIlKREhCDJjsDsXzn-74U4BWc5bxCiY_AZ-KkHPQQLfejD4KBrXef6Aepet_scMoweDuvkXGHbmF0DTfweB6EvvnTbQuN0B42ehNjD1-x2TSxcq_O0sn5awPXepNBAG7ttzNOBTg8uBd3CxXP9UZ-DE6_b7C7-6hy8392-LR-K1cv943KxKiyWjBWSUCkd5bIRxlGLiK0s04IRYqTljCHPmjGhilGPiTWNJdhW3mPtjeCc0zm4Ouzdpvi5c3lQm7hL449ZEYaJrOh4YHTxg8ummHNyXm1T6HTaK4zUxFpNFNVEVE2sFVEH1vQXKzpypg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Zeng, Lingqi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</title><author>Zeng, Lingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1955-92399e379d8be3c02c6c5a8522b9c7550f5d50f0653f12cbdc21c6ff1afb87773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Box beams</topic><topic>Box girders</topic><topic>CAD</topic><topic>Composite materials</topic><topic>Computer aided design</topic><topic>Displacement</topic><topic>Epoxy resins</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hybrid composites</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Physics</topic><topic>Polymer matrix composites</topic><topic>Shape memory alloys</topic><topic>Transverse loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingqi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1802</volume><issue>2</issue><spage>22095</spage><pages>22095-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The Auricchio model based on shape memory alloy and the finite element analysis software ANSYS Workbench firstly simulated the pseudo-elastic characteristics of SMA bar during the stretching cycle loading and unloading. Secondly, based on ANSYS Material Designer module, a SMA/glass/epoxy resin composite Material model was established and its Material parameters were obtained. ANSYS ACP module was used to establish the finite element model of pseudo-elastic SMA hybrid composite box thin-walled beam. Finally, the static response of SMA composite box thin-walled beam under transverse load is studied, and the influences of SMA, layout Angle, width to height ratio and volume content of SMA layer on the static response of box girder are discussed. The results show that the transverse displacement of the free end of the thin-walled beam increases with the increase of the laying Angle whether there is SMA fiber or not. After embedding SMA, the transverse displacement of the free end of the box thin-wall beam of hybrid composite was smaller. The transverse displacement of the free end of the thin-walled beam with the change curve of the lay-up Angle under the two con Figurations is consistent and basically consistent. At the same laying Angle, the transverse displacement of the free end of SMA hybrid box thin-walled beam decreases with the increase of the width to height ratio and the volume content of SMA monolayer.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1802/2/022095</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-03, Vol.1802 (2), p.22095
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512963399
source Open Access: IOP Publishing Free Content; IOPscience journals; Full-Text Journals in Chemistry (Open access); Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects Alloying elements
Box beams
Box girders
CAD
Composite materials
Computer aided design
Displacement
Epoxy resins
Finite element analysis
Finite element method
Hybrid composites
Mathematical models
Modules
Physics
Polymer matrix composites
Shape memory alloys
Transverse loads
title Static finite element analysis of three-closed box thin-wall beam based on Pseudo-elastic SMA hybrid composite material ANSYS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20finite%20element%20analysis%20of%20three-closed%20box%20thin-wall%20beam%20based%20on%20Pseudo-elastic%20SMA%20hybrid%20composite%20material%20ANSYS&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zeng,%20Lingqi&rft.date=2021-03-01&rft.volume=1802&rft.issue=2&rft.spage=22095&rft.pages=22095-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1802/2/022095&rft_dat=%3Cproquest_cross%3E2512963399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512963399&rft_id=info:pmid/&rfr_iscdi=true