The effect of dopant material to optical properties: energy band gap Tin Oxide thin film
The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of thi...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-02, Vol.1816 (1), p.12114 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12114 |
container_title | Journal of physics. Conference series |
container_volume | 1816 |
creator | Doyan, A Susilawati Muliyadi, L Hakim, S Munandar, H Taufik, M |
description | The synthesis of the SnO
2
thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO
2
thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO
2
thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials. |
doi_str_mv | 10.1088/1742-6596/1816/1/012114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512963269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512963269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKufwYDntfmzu0m8SdEqFHqp4C1kk0mb0u6uSQr227tLpXOYeTCPecMPoUdKnimRckZFyYq6UvWMSjq0GaGM0vIKTS6b64uW8hbdpbQjhA8lJuh7vQUM3oPNuPPYdb1pMz6YDDGYPc4d7voc7CD72PUQc4D0gqGFuDnhxrQOb0yP16HFq9_gAOftIH3YH-7RjTf7BA__c4q-3t_W849iuVp8zl-XhWWlKgsljeWKOEVLJpkwvioVY9Y6ANIAr4ikQkgpGLeGeFZX3kDdODDWNKRykk_R0_nu8N_PEVLWu-4Y2yFSs4oyVXNWq8Elzi4bu5QieN3HcDDxpCnRI0Y9AtIjLD1i1FSfMfI_3BplQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512963269</pqid></control><display><type>article</type><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</creator><creatorcontrib>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</creatorcontrib><description>The synthesis of the SnO
2
thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO
2
thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO
2
thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1816/1/012114</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Doping ; Energy ; Energy bands ; Energy gap ; Energy value ; Fluorine ; Indium ; Optical properties ; Physics ; Semiconductor materials ; Sol-gel processes ; Spin coating ; Synthesis ; Thin films ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of physics. Conference series, 2021-02, Vol.1816 (1), p.12114</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</citedby><cites>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Doyan, A</creatorcontrib><creatorcontrib>Susilawati</creatorcontrib><creatorcontrib>Muliyadi, L</creatorcontrib><creatorcontrib>Hakim, S</creatorcontrib><creatorcontrib>Munandar, H</creatorcontrib><creatorcontrib>Taufik, M</creatorcontrib><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><title>Journal of physics. Conference series</title><description>The synthesis of the SnO
2
thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO
2
thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO
2
thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</description><subject>Aluminum</subject><subject>Doping</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Energy value</subject><subject>Fluorine</subject><subject>Indium</subject><subject>Optical properties</subject><subject>Physics</subject><subject>Semiconductor materials</subject><subject>Sol-gel processes</subject><subject>Spin coating</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LAzEQxYMoWKufwYDntfmzu0m8SdEqFHqp4C1kk0mb0u6uSQr227tLpXOYeTCPecMPoUdKnimRckZFyYq6UvWMSjq0GaGM0vIKTS6b64uW8hbdpbQjhA8lJuh7vQUM3oPNuPPYdb1pMz6YDDGYPc4d7voc7CD72PUQc4D0gqGFuDnhxrQOb0yP16HFq9_gAOftIH3YH-7RjTf7BA__c4q-3t_W849iuVp8zl-XhWWlKgsljeWKOEVLJpkwvioVY9Y6ANIAr4ikQkgpGLeGeFZX3kDdODDWNKRykk_R0_nu8N_PEVLWu-4Y2yFSs4oyVXNWq8Elzi4bu5QieN3HcDDxpCnRI0Y9AtIjLD1i1FSfMfI_3BplQg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Doyan, A</creator><creator>Susilawati</creator><creator>Muliyadi, L</creator><creator>Hakim, S</creator><creator>Munandar, H</creator><creator>Taufik, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><author>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Doping</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Energy value</topic><topic>Fluorine</topic><topic>Indium</topic><topic>Optical properties</topic><topic>Physics</topic><topic>Semiconductor materials</topic><topic>Sol-gel processes</topic><topic>Spin coating</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyan, A</creatorcontrib><creatorcontrib>Susilawati</creatorcontrib><creatorcontrib>Muliyadi, L</creatorcontrib><creatorcontrib>Hakim, S</creatorcontrib><creatorcontrib>Munandar, H</creatorcontrib><creatorcontrib>Taufik, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyan, A</au><au>Susilawati</au><au>Muliyadi, L</au><au>Hakim, S</au><au>Munandar, H</au><au>Taufik, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>1816</volume><issue>1</issue><spage>12114</spage><pages>12114-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The synthesis of the SnO
2
thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO
2
thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO
2
thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1816/1/012114</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-02, Vol.1816 (1), p.12114 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512963269 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aluminum Doping Energy Energy bands Energy gap Energy value Fluorine Indium Optical properties Physics Semiconductor materials Sol-gel processes Spin coating Synthesis Thin films Tin dioxide Tin oxides |
title | The effect of dopant material to optical properties: energy band gap Tin Oxide thin film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20dopant%20material%20to%20optical%20properties:%20energy%20band%20gap%20Tin%20Oxide%20thin%20film&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Doyan,%20A&rft.date=2021-02-01&rft.volume=1816&rft.issue=1&rft.spage=12114&rft.pages=12114-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1816/1/012114&rft_dat=%3Cproquest_cross%3E2512963269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512963269&rft_id=info:pmid/&rfr_iscdi=true |