The effect of dopant material to optical properties: energy band gap Tin Oxide thin film

The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-02, Vol.1816 (1), p.12114
Hauptverfasser: Doyan, A, Susilawati, Muliyadi, L, Hakim, S, Munandar, H, Taufik, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12114
container_title Journal of physics. Conference series
container_volume 1816
creator Doyan, A
Susilawati
Muliyadi, L
Hakim, S
Munandar, H
Taufik, M
description The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO 2 thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO 2 thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.
doi_str_mv 10.1088/1742-6596/1816/1/012114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512963269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512963269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKufwYDntfmzu0m8SdEqFHqp4C1kk0mb0u6uSQr227tLpXOYeTCPecMPoUdKnimRckZFyYq6UvWMSjq0GaGM0vIKTS6b64uW8hbdpbQjhA8lJuh7vQUM3oPNuPPYdb1pMz6YDDGYPc4d7voc7CD72PUQc4D0gqGFuDnhxrQOb0yP16HFq9_gAOftIH3YH-7RjTf7BA__c4q-3t_W849iuVp8zl-XhWWlKgsljeWKOEVLJpkwvioVY9Y6ANIAr4ikQkgpGLeGeFZX3kDdODDWNKRykk_R0_nu8N_PEVLWu-4Y2yFSs4oyVXNWq8Elzi4bu5QieN3HcDDxpCnRI0Y9AtIjLD1i1FSfMfI_3BplQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512963269</pqid></control><display><type>article</type><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</creator><creatorcontrib>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</creatorcontrib><description>The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO 2 thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO 2 thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1816/1/012114</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum ; Doping ; Energy ; Energy bands ; Energy gap ; Energy value ; Fluorine ; Indium ; Optical properties ; Physics ; Semiconductor materials ; Sol-gel processes ; Spin coating ; Synthesis ; Thin films ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of physics. Conference series, 2021-02, Vol.1816 (1), p.12114</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</citedby><cites>FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Doyan, A</creatorcontrib><creatorcontrib>Susilawati</creatorcontrib><creatorcontrib>Muliyadi, L</creatorcontrib><creatorcontrib>Hakim, S</creatorcontrib><creatorcontrib>Munandar, H</creatorcontrib><creatorcontrib>Taufik, M</creatorcontrib><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><title>Journal of physics. Conference series</title><description>The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO 2 thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO 2 thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</description><subject>Aluminum</subject><subject>Doping</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Energy value</subject><subject>Fluorine</subject><subject>Indium</subject><subject>Optical properties</subject><subject>Physics</subject><subject>Semiconductor materials</subject><subject>Sol-gel processes</subject><subject>Spin coating</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kE9LAzEQxYMoWKufwYDntfmzu0m8SdEqFHqp4C1kk0mb0u6uSQr227tLpXOYeTCPecMPoUdKnimRckZFyYq6UvWMSjq0GaGM0vIKTS6b64uW8hbdpbQjhA8lJuh7vQUM3oPNuPPYdb1pMz6YDDGYPc4d7voc7CD72PUQc4D0gqGFuDnhxrQOb0yP16HFq9_gAOftIH3YH-7RjTf7BA__c4q-3t_W849iuVp8zl-XhWWlKgsljeWKOEVLJpkwvioVY9Y6ANIAr4ikQkgpGLeGeFZX3kDdODDWNKRykk_R0_nu8N_PEVLWu-4Y2yFSs4oyVXNWq8Elzi4bu5QieN3HcDDxpCnRI0Y9AtIjLD1i1FSfMfI_3BplQg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Doyan, A</creator><creator>Susilawati</creator><creator>Muliyadi, L</creator><creator>Hakim, S</creator><creator>Munandar, H</creator><creator>Taufik, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</title><author>Doyan, A ; Susilawati ; Muliyadi, L ; Hakim, S ; Munandar, H ; Taufik, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2494-98ac390d9142827af54922ccdee0be350817788723ca0f265fae6bdeacab05d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Doping</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Energy value</topic><topic>Fluorine</topic><topic>Indium</topic><topic>Optical properties</topic><topic>Physics</topic><topic>Semiconductor materials</topic><topic>Sol-gel processes</topic><topic>Spin coating</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doyan, A</creatorcontrib><creatorcontrib>Susilawati</creatorcontrib><creatorcontrib>Muliyadi, L</creatorcontrib><creatorcontrib>Hakim, S</creatorcontrib><creatorcontrib>Munandar, H</creatorcontrib><creatorcontrib>Taufik, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doyan, A</au><au>Susilawati</au><au>Muliyadi, L</au><au>Hakim, S</au><au>Munandar, H</au><au>Taufik, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of dopant material to optical properties: energy band gap Tin Oxide thin film</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>1816</volume><issue>1</issue><spage>12114</spage><pages>12114-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The synthesis of the SnO 2 thin film with doped materials of aluminum, fluorin indium, a combination of aluminum and indium, a combination of aluminum and fluorine, an a combination of the three doping agents, namely aluminum, fluorine, and indium have be successfully carried out. The purpose of this synthesis is to determine the effect of the vario doping materials on the resulting bandgap energy value. The thin layer was synthesized usi the sol-gel spin coating technique with the ratio of the base material and doping material us were 95: 5% and 85: 15%. The results showed that the higher the doping materi concentration, the resulting bandgap energy value decreased. In addition, the highest bandg energy value is found in the SnO 2 thin film with indium doping, namely for direct 3.62 eV (9 5% percentage) and 3.59 eV (percentage 85: 15%), while the indirect bandgap energy value 3, 92 eV (percentage 95: 5%) and 3.67 eV (percentage 85: 15%). The lowest energy band g value is found in the SnO 2 thin film with a combination of the three doping aluminum, fluorin and indium, namely for direct 3.50 eV (95: 5% percentage) and 3.41 eV (percentage 85: 15% while the energy band gap value is indirect. namely 3.81 eV (percentage 95: 5%) and 3.55 e (percentage 85: 15%). All the energy band gap range in semiconductor materials.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1816/1/012114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-02, Vol.1816 (1), p.12114
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512963269
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aluminum
Doping
Energy
Energy bands
Energy gap
Energy value
Fluorine
Indium
Optical properties
Physics
Semiconductor materials
Sol-gel processes
Spin coating
Synthesis
Thin films
Tin dioxide
Tin oxides
title The effect of dopant material to optical properties: energy band gap Tin Oxide thin film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20dopant%20material%20to%20optical%20properties:%20energy%20band%20gap%20Tin%20Oxide%20thin%20film&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Doyan,%20A&rft.date=2021-02-01&rft.volume=1816&rft.issue=1&rft.spage=12114&rft.pages=12114-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1816/1/012114&rft_dat=%3Cproquest_cross%3E2512963269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512963269&rft_id=info:pmid/&rfr_iscdi=true