Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)

The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-03, Vol.1818 (1), p.12136
1. Verfasser: Kadhim Shubbar, Adnan Waseel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12136
container_title Journal of physics. Conference series
container_volume 1818
creator Kadhim Shubbar, Adnan Waseel
description The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.
doi_str_mv 10.1088/1742-6596/1818/1/012136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512962449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512962449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1956-b1bb10f9d8adf6ca766e5dafddabcdf5bdc387dfad2def1bee108b3704452e023</originalsourceid><addsrcrecordid>eNpFUclOwzAQjRBIlOUbsMQFDqF29hxRaaFSWQTlbNnxuHWVxsV2WvXv-DQcGsFcPKN5y8gvCK4IviO4KIYkT6IwS8tsSArixyEmEYmzo2Dwtzn-64viNDizdoVx7CsfBN_jLatb5pRukJZobtSmBjRtHCwMqy3aKbdEH6pZtDUz6I0Zp1iNHsCorSdtwSJt_vc9rxEWqQZx7bnjbvDKbgnoHRa9Tw_8teV79NKuvWLF6nqPnsEttehAL7BzuglH2nmbkV5vtFUO0ESbtXez6OZ5_nF7EZxIfyhc9u958DkZz0dP4ez1cTq6n4UVKdMs5IRzgmUpCiZkVrE8yyAVTArBeCVkykUVF7mQTEQCJOEA_nN5nOMkSSPAUXweXB90N0Z_tWAdXenWNN6SRimJyixKktKj8gOqMtpaA5JujFozs6cE0y4u2gVBu1BoFxcl9BBX_APaNI2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512962449</pqid></control><display><type>article</type><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kadhim Shubbar, Adnan Waseel</creator><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><description>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1818/1/012136</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Integrals ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1818 (1), p.12136</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><title>Journal of physics. Conference series</title><description>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</description><subject>Integrals</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUclOwzAQjRBIlOUbsMQFDqF29hxRaaFSWQTlbNnxuHWVxsV2WvXv-DQcGsFcPKN5y8gvCK4IviO4KIYkT6IwS8tsSArixyEmEYmzo2Dwtzn-64viNDizdoVx7CsfBN_jLatb5pRukJZobtSmBjRtHCwMqy3aKbdEH6pZtDUz6I0Zp1iNHsCorSdtwSJt_vc9rxEWqQZx7bnjbvDKbgnoHRa9Tw_8teV79NKuvWLF6nqPnsEttehAL7BzuglH2nmbkV5vtFUO0ESbtXez6OZ5_nF7EZxIfyhc9u958DkZz0dP4ez1cTq6n4UVKdMs5IRzgmUpCiZkVrE8yyAVTArBeCVkykUVF7mQTEQCJOEA_nN5nOMkSSPAUXweXB90N0Z_tWAdXenWNN6SRimJyixKktKj8gOqMtpaA5JujFozs6cE0y4u2gVBu1BoFxcl9BBX_APaNI2L</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kadhim Shubbar, Adnan Waseel</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><author>Kadhim Shubbar, Adnan Waseel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1956-b1bb10f9d8adf6ca766e5dafddabcdf5bdc387dfad2def1bee108b3704452e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Integrals</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadhim Shubbar, Adnan Waseel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1818</volume><issue>1</issue><spage>12136</spage><pages>12136-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1818/1/012136</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-03, Vol.1818 (1), p.12136
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512962449
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Integrals
Physics
title Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Triple%20Integrals%20with%20Singular%20Partial%20Derivatives%20or%20Singular%20Integrands%20in%20both%20Ends%20of%20the%20Region%20of%20Integration%20by%20Numerically%20Method%20of%20Newton-Cotes%20Composite%20Formulas%20(MTS)&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kadhim%20Shubbar,%20Adnan%20Waseel&rft.date=2021-03-01&rft.volume=1818&rft.issue=1&rft.spage=12136&rft.pages=12136-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1818/1/012136&rft_dat=%3Cproquest_cross%3E2512962449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512962449&rft_id=info:pmid/&rfr_iscdi=true