Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)
The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerical...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-03, Vol.1818 (1), p.12136 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12136 |
container_title | Journal of physics. Conference series |
container_volume | 1818 |
creator | Kadhim Shubbar, Adnan Waseel |
description | The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals. |
doi_str_mv | 10.1088/1742-6596/1818/1/012136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512962449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512962449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1956-b1bb10f9d8adf6ca766e5dafddabcdf5bdc387dfad2def1bee108b3704452e023</originalsourceid><addsrcrecordid>eNpFUclOwzAQjRBIlOUbsMQFDqF29hxRaaFSWQTlbNnxuHWVxsV2WvXv-DQcGsFcPKN5y8gvCK4IviO4KIYkT6IwS8tsSArixyEmEYmzo2Dwtzn-64viNDizdoVx7CsfBN_jLatb5pRukJZobtSmBjRtHCwMqy3aKbdEH6pZtDUz6I0Zp1iNHsCorSdtwSJt_vc9rxEWqQZx7bnjbvDKbgnoHRa9Tw_8teV79NKuvWLF6nqPnsEttehAL7BzuglH2nmbkV5vtFUO0ESbtXez6OZ5_nF7EZxIfyhc9u958DkZz0dP4ez1cTq6n4UVKdMs5IRzgmUpCiZkVrE8yyAVTArBeCVkykUVF7mQTEQCJOEA_nN5nOMkSSPAUXweXB90N0Z_tWAdXenWNN6SRimJyixKktKj8gOqMtpaA5JujFozs6cE0y4u2gVBu1BoFxcl9BBX_APaNI2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512962449</pqid></control><display><type>article</type><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kadhim Shubbar, Adnan Waseel</creator><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><description>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1818/1/012136</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Integrals ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1818 (1), p.12136</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><title>Journal of physics. Conference series</title><description>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</description><subject>Integrals</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFUclOwzAQjRBIlOUbsMQFDqF29hxRaaFSWQTlbNnxuHWVxsV2WvXv-DQcGsFcPKN5y8gvCK4IviO4KIYkT6IwS8tsSArixyEmEYmzo2Dwtzn-64viNDizdoVx7CsfBN_jLatb5pRukJZobtSmBjRtHCwMqy3aKbdEH6pZtDUz6I0Zp1iNHsCorSdtwSJt_vc9rxEWqQZx7bnjbvDKbgnoHRa9Tw_8teV79NKuvWLF6nqPnsEttehAL7BzuglH2nmbkV5vtFUO0ESbtXez6OZ5_nF7EZxIfyhc9u958DkZz0dP4ez1cTq6n4UVKdMs5IRzgmUpCiZkVrE8yyAVTArBeCVkykUVF7mQTEQCJOEA_nN5nOMkSSPAUXweXB90N0Z_tWAdXenWNN6SRimJyixKktKj8gOqMtpaA5JujFozs6cE0y4u2gVBu1BoFxcl9BBX_APaNI2L</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kadhim Shubbar, Adnan Waseel</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</title><author>Kadhim Shubbar, Adnan Waseel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1956-b1bb10f9d8adf6ca766e5dafddabcdf5bdc387dfad2def1bee108b3704452e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Integrals</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadhim Shubbar, Adnan Waseel</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadhim Shubbar, Adnan Waseel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS)</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1818</volume><issue>1</issue><spage>12136</spage><pages>12136-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The main aimof this research is evaluation thevalues of the triple dimension integrals numerically, when its integrands are either continuous with singular partial derivatives or singular in all ends of the region of integration. Through this derivation the errors (correction terms) to the numerically method (MTS) such that the letter S refer to Simpson’s rule on the dimension x and the letter T refer to Trapezoidal Rule on the dimension x and the letter M refer to Mid-point rule on the dimension z and to improve the results of the triple integrals weused Romberg’s accelerating method by depending on these correction terms that we found, andwe indicate this method by (RMTS), we can depend on it to calculate the triple integrals when its integrands singular or continuous with singular partial derivatives or singular in all ends of the region of integration and give higher accuracy inthe results by few sub intervals.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1818/1/012136</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-03, Vol.1818 (1), p.12136 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512962449 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Integrals Physics |
title | Evaluation of Triple Integrals with Singular Partial Derivatives or Singular Integrands in both Ends of the Region of Integration by Numerically Method of Newton-Cotes Composite Formulas (MTS) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Triple%20Integrals%20with%20Singular%20Partial%20Derivatives%20or%20Singular%20Integrands%20in%20both%20Ends%20of%20the%20Region%20of%20Integration%20by%20Numerically%20Method%20of%20Newton-Cotes%20Composite%20Formulas%20(MTS)&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kadhim%20Shubbar,%20Adnan%20Waseel&rft.date=2021-03-01&rft.volume=1818&rft.issue=1&rft.spage=12136&rft.pages=12136-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1818/1/012136&rft_dat=%3Cproquest_cross%3E2512962449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512962449&rft_id=info:pmid/&rfr_iscdi=true |