Homogeneous Poisson process in daily case of covid-19

Since December 2019, an increasing number of new pneumonia cases have emerged in Wuhan, China. The rise of the spread of diseases caused by the Corona Virus Disease (covid-19) which has been established as a pandemic by WHO on March 12, 2020, gave rise to so much anxiety and speculation from various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-01, Vol.1722 (1), p.12078
Hauptverfasser: Alawiyah, M, Johar, D A, Ruchjana, B N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12078
container_title Journal of physics. Conference series
container_volume 1722
creator Alawiyah, M
Johar, D A
Ruchjana, B N
description Since December 2019, an increasing number of new pneumonia cases have emerged in Wuhan, China. The rise of the spread of diseases caused by the Corona Virus Disease (covid-19) which has been established as a pandemic by WHO on March 12, 2020, gave rise to so much anxiety and speculation from various parties. The case of covid-19 positive patients Daily can be calculated by the homogeneous Poisson process. A Poisson process with a constant rate (λ) is called a homogeneous Poisson process. The average number of positive patients of Covid-19 from January 24, 2020, to April 16, 2020, is still very large. The chances of not having cases of covid-19 positive patients from January 24, 2020 to April 16, 2020 are very small so there will always be covid-19 cases every. Therefore, elements of society and government must consider handling and preventing the Covid-19 case.
doi_str_mv 10.1088/1742-6596/1722/1/012078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512961661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512961661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3768-db4e6145696ccbdba9a19bad0319d0ed714f2acb2e1739626545562c3dff26753</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKvPYMA7YW0m2SSbSylqlYIF9Tpk8yNb2s26sYJvb5aViiA4NzMw38yZOQidA7kCUlUzkCUtBFciV5TOYEaAElkdoMm-c7ivq-oYnaS0JoTlkBPEF3EbX33r4y7hVWxSii3u-mh9SrhpsTPN5hNbkzyOAdv40bgC1Ck6CmaT_Nl3nqKX25vn-aJYPt7dz6-XhWVSVIWrSy-g5EIJa2tXG2VA1cYRBsoR7ySUgRpbUw-SKUEFLzkX1DIXAhWSsym6GPfmi952Pr3rddz1bZbUlANVAoSATMmRsn1MqfdBd32zNf2nBqIHj_TwvR6c0INHGvToUZ68HCeb2P2sfljNn36DunMhw-wP-D-JL2KbdHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512961661</pqid></control><display><type>article</type><title>Homogeneous Poisson process in daily case of covid-19</title><source>Institute of Physics IOPscience extra</source><source>IOP_英国物理学会OA刊</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Alawiyah, M ; Johar, D A ; Ruchjana, B N</creator><creatorcontrib>Alawiyah, M ; Johar, D A ; Ruchjana, B N</creatorcontrib><description>Since December 2019, an increasing number of new pneumonia cases have emerged in Wuhan, China. The rise of the spread of diseases caused by the Corona Virus Disease (covid-19) which has been established as a pandemic by WHO on March 12, 2020, gave rise to so much anxiety and speculation from various parties. The case of covid-19 positive patients Daily can be calculated by the homogeneous Poisson process. A Poisson process with a constant rate (λ) is called a homogeneous Poisson process. The average number of positive patients of Covid-19 from January 24, 2020, to April 16, 2020, is still very large. The chances of not having cases of covid-19 positive patients from January 24, 2020 to April 16, 2020 are very small so there will always be covid-19 cases every. Therefore, elements of society and government must consider handling and preventing the Covid-19 case.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1722/1/012078</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coronaviruses ; COVID-19 ; Physics ; Poisson density functions</subject><ispartof>Journal of physics. Conference series, 2021-01, Vol.1722 (1), p.12078</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3768-db4e6145696ccbdba9a19bad0319d0ed714f2acb2e1739626545562c3dff26753</citedby><cites>FETCH-LOGICAL-c3768-db4e6145696ccbdba9a19bad0319d0ed714f2acb2e1739626545562c3dff26753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1722/1/012078/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Alawiyah, M</creatorcontrib><creatorcontrib>Johar, D A</creatorcontrib><creatorcontrib>Ruchjana, B N</creatorcontrib><title>Homogeneous Poisson process in daily case of covid-19</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Since December 2019, an increasing number of new pneumonia cases have emerged in Wuhan, China. The rise of the spread of diseases caused by the Corona Virus Disease (covid-19) which has been established as a pandemic by WHO on March 12, 2020, gave rise to so much anxiety and speculation from various parties. The case of covid-19 positive patients Daily can be calculated by the homogeneous Poisson process. A Poisson process with a constant rate (λ) is called a homogeneous Poisson process. The average number of positive patients of Covid-19 from January 24, 2020, to April 16, 2020, is still very large. The chances of not having cases of covid-19 positive patients from January 24, 2020 to April 16, 2020 are very small so there will always be covid-19 cases every. Therefore, elements of society and government must consider handling and preventing the Covid-19 case.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Physics</subject><subject>Poisson density functions</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkN1KAzEQhYMoWKvPYMA7YW0m2SSbSylqlYIF9Tpk8yNb2s26sYJvb5aViiA4NzMw38yZOQidA7kCUlUzkCUtBFciV5TOYEaAElkdoMm-c7ivq-oYnaS0JoTlkBPEF3EbX33r4y7hVWxSii3u-mh9SrhpsTPN5hNbkzyOAdv40bgC1Ck6CmaT_Nl3nqKX25vn-aJYPt7dz6-XhWVSVIWrSy-g5EIJa2tXG2VA1cYRBsoR7ySUgRpbUw-SKUEFLzkX1DIXAhWSsym6GPfmi952Pr3rddz1bZbUlANVAoSATMmRsn1MqfdBd32zNf2nBqIHj_TwvR6c0INHGvToUZ68HCeb2P2sfljNn36DunMhw-wP-D-JL2KbdHA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Alawiyah, M</creator><creator>Johar, D A</creator><creator>Ruchjana, B N</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210101</creationdate><title>Homogeneous Poisson process in daily case of covid-19</title><author>Alawiyah, M ; Johar, D A ; Ruchjana, B N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3768-db4e6145696ccbdba9a19bad0319d0ed714f2acb2e1739626545562c3dff26753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Physics</topic><topic>Poisson density functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alawiyah, M</creatorcontrib><creatorcontrib>Johar, D A</creatorcontrib><creatorcontrib>Ruchjana, B N</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alawiyah, M</au><au>Johar, D A</au><au>Ruchjana, B N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous Poisson process in daily case of covid-19</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>1722</volume><issue>1</issue><spage>12078</spage><pages>12078-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Since December 2019, an increasing number of new pneumonia cases have emerged in Wuhan, China. The rise of the spread of diseases caused by the Corona Virus Disease (covid-19) which has been established as a pandemic by WHO on March 12, 2020, gave rise to so much anxiety and speculation from various parties. The case of covid-19 positive patients Daily can be calculated by the homogeneous Poisson process. A Poisson process with a constant rate (λ) is called a homogeneous Poisson process. The average number of positive patients of Covid-19 from January 24, 2020, to April 16, 2020, is still very large. The chances of not having cases of covid-19 positive patients from January 24, 2020 to April 16, 2020 are very small so there will always be covid-19 cases every. Therefore, elements of society and government must consider handling and preventing the Covid-19 case.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1722/1/012078</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-01, Vol.1722 (1), p.12078
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512961661
source Institute of Physics IOPscience extra; IOP_英国物理学会OA刊; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Coronaviruses
COVID-19
Physics
Poisson density functions
title Homogeneous Poisson process in daily case of covid-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20Poisson%20process%20in%20daily%20case%20of%20covid-19&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Alawiyah,%20M&rft.date=2021-01-01&rft.volume=1722&rft.issue=1&rft.spage=12078&rft.pages=12078-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1722/1/012078&rft_dat=%3Cproquest_cross%3E2512961661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512961661&rft_id=info:pmid/&rfr_iscdi=true