A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform

In an online multi-tenant machine learning platform, the system manager would dynamically load the computing resource according to the tenant’s demand. With cloud computing services, the platform can rent or release computing resources dynamically to fulfill tenant usage which minimizes resource con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-02, Vol.1828 (1), p.12039
Hauptverfasser: Lee, Chun-Hsiang, He, Zhengda, Li, Zhaofeng, Lu, Xu, Wang, Jian, Wu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12039
container_title Journal of physics. Conference series
container_volume 1828
creator Lee, Chun-Hsiang
He, Zhengda
Li, Zhaofeng
Lu, Xu
Wang, Jian
Wu, Chao
description In an online multi-tenant machine learning platform, the system manager would dynamically load the computing resource according to the tenant’s demand. With cloud computing services, the platform can rent or release computing resources dynamically to fulfill tenant usage which minimizes resource consumption and ensure scalability. Currently, many cloud-based services providers are using the rule-based, threshold auto-scaling mechanism. However, the rule-based method is not efficient, as the nature of availability and cost-reducing violate each other in this method, especially with the sudden increase or variation of the demand. In this paper, we compare several machine-learning-based predictive algorithms to build models based on the information of the system used to predict future usage demands. Decisions made based on this prediction save over 80% cloud resource consumption compared to the rule-based method.
doi_str_mv 10.1088/1742-6596/1828/1/012039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512956368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512956368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2499-67e0540fd7d5d3b0d9f354b69daac0805da3adf93b2eae3616c1d5d4c55dc63c3</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwDETiXJY0TdocqwoY0iYQjHPkJenW0TYjaQ-8PamG5ott-fdv60PonpJHSopiQfMsTQSXYkGLNLYLQlPC5AWanSeX57oortFNCAdCWIx8hr5LXLnuCL4JrseuxmvQ-6a3eGXB902_w2W7c74Z9l3AtfO4HAfXwdBoXLVuNPjDBjd6bfGnhnbSRxvA67EdmmRje-gH_N7CEFe7W3RVQxvs3X-eo6_np021TFZvL69VuUp0mkmZiNwSnpHa5IYbtiVG1oxnWyENgCYF4QYYmFqybWrBMkGFplGZac6NFkyzOXo4-R69-xltGNQhvtjHkyrlNJVcMFFEVX5Sae9C8LZWR9904H8VJWoiqyZmauKnJrKKqhNZ9gc-vGzP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512956368</pqid></control><display><type>article</type><title>A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Chun-Hsiang ; He, Zhengda ; Li, Zhaofeng ; Lu, Xu ; Wang, Jian ; Wu, Chao</creator><creatorcontrib>Lee, Chun-Hsiang ; He, Zhengda ; Li, Zhaofeng ; Lu, Xu ; Wang, Jian ; Wu, Chao</creatorcontrib><description>In an online multi-tenant machine learning platform, the system manager would dynamically load the computing resource according to the tenant’s demand. With cloud computing services, the platform can rent or release computing resources dynamically to fulfill tenant usage which minimizes resource consumption and ensure scalability. Currently, many cloud-based services providers are using the rule-based, threshold auto-scaling mechanism. However, the rule-based method is not efficient, as the nature of availability and cost-reducing violate each other in this method, especially with the sudden increase or variation of the demand. In this paper, we compare several machine-learning-based predictive algorithms to build models based on the information of the system used to predict future usage demands. Decisions made based on this prediction save over 80% cloud resource consumption compared to the rule-based method.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1828/1/012039</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Cloud computing ; Consumption ; Machine learning ; Physics</subject><ispartof>Journal of physics. Conference series, 2021-02, Vol.1828 (1), p.12039</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2499-67e0540fd7d5d3b0d9f354b69daac0805da3adf93b2eae3616c1d5d4c55dc63c3</citedby><cites>FETCH-LOGICAL-c2499-67e0540fd7d5d3b0d9f354b69daac0805da3adf93b2eae3616c1d5d4c55dc63c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Lee, Chun-Hsiang</creatorcontrib><creatorcontrib>He, Zhengda</creatorcontrib><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><title>A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform</title><title>Journal of physics. Conference series</title><description>In an online multi-tenant machine learning platform, the system manager would dynamically load the computing resource according to the tenant’s demand. With cloud computing services, the platform can rent or release computing resources dynamically to fulfill tenant usage which minimizes resource consumption and ensure scalability. Currently, many cloud-based services providers are using the rule-based, threshold auto-scaling mechanism. However, the rule-based method is not efficient, as the nature of availability and cost-reducing violate each other in this method, especially with the sudden increase or variation of the demand. In this paper, we compare several machine-learning-based predictive algorithms to build models based on the information of the system used to predict future usage demands. Decisions made based on this prediction save over 80% cloud resource consumption compared to the rule-based method.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Consumption</subject><subject>Machine learning</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwDETiXJY0TdocqwoY0iYQjHPkJenW0TYjaQ-8PamG5ott-fdv60PonpJHSopiQfMsTQSXYkGLNLYLQlPC5AWanSeX57oortFNCAdCWIx8hr5LXLnuCL4JrseuxmvQ-6a3eGXB902_w2W7c74Z9l3AtfO4HAfXwdBoXLVuNPjDBjd6bfGnhnbSRxvA67EdmmRje-gH_N7CEFe7W3RVQxvs3X-eo6_np021TFZvL69VuUp0mkmZiNwSnpHa5IYbtiVG1oxnWyENgCYF4QYYmFqybWrBMkGFplGZac6NFkyzOXo4-R69-xltGNQhvtjHkyrlNJVcMFFEVX5Sae9C8LZWR9904H8VJWoiqyZmauKnJrKKqhNZ9gc-vGzP</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Lee, Chun-Hsiang</creator><creator>He, Zhengda</creator><creator>Li, Zhaofeng</creator><creator>Lu, Xu</creator><creator>Wang, Jian</creator><creator>Wu, Chao</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210201</creationdate><title>A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform</title><author>Lee, Chun-Hsiang ; He, Zhengda ; Li, Zhaofeng ; Lu, Xu ; Wang, Jian ; Wu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2499-67e0540fd7d5d3b0d9f354b69daac0805da3adf93b2eae3616c1d5d4c55dc63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Consumption</topic><topic>Machine learning</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chun-Hsiang</creatorcontrib><creatorcontrib>He, Zhengda</creatorcontrib><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chun-Hsiang</au><au>He, Zhengda</au><au>Li, Zhaofeng</au><au>Lu, Xu</au><au>Wang, Jian</au><au>Wu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>1828</volume><issue>1</issue><spage>12039</spage><pages>12039-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In an online multi-tenant machine learning platform, the system manager would dynamically load the computing resource according to the tenant’s demand. With cloud computing services, the platform can rent or release computing resources dynamically to fulfill tenant usage which minimizes resource consumption and ensure scalability. Currently, many cloud-based services providers are using the rule-based, threshold auto-scaling mechanism. However, the rule-based method is not efficient, as the nature of availability and cost-reducing violate each other in this method, especially with the sudden increase or variation of the demand. In this paper, we compare several machine-learning-based predictive algorithms to build models based on the information of the system used to predict future usage demands. Decisions made based on this prediction save over 80% cloud resource consumption compared to the rule-based method.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1828/1/012039</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-02, Vol.1828 (1), p.12039
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512956368
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Cloud computing
Consumption
Machine learning
Physics
title A Comparison of Machine Learning Algorithms for Automatic Cloud Resource Scaling on a Multi-Tenant Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Machine%20Learning%20Algorithms%20for%20Automatic%20Cloud%20Resource%20Scaling%20on%20a%20Multi-Tenant%20Platform&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lee,%20Chun-Hsiang&rft.date=2021-02-01&rft.volume=1828&rft.issue=1&rft.spage=12039&rft.pages=12039-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1828/1/012039&rft_dat=%3Cproquest_cross%3E2512956368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512956368&rft_id=info:pmid/&rfr_iscdi=true