Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency

Fast and efficient detection of single photons with high timing accuracy is a crucial requirement in most quantum optics experiments and enables novel sensing and imaging solutions. Superconducting nanowire single-photon detectors (SNSPD) achieve technology-leading performance in terms of detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-04, Vol.118 (15)
Hauptverfasser: Wolff, Martin A., Beutel, Fabian, Schütte, Jonas, Gehring, Helge, Häußler, Matthias, Pernice, Wolfram, Schuck, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Applied physics letters
container_volume 118
creator Wolff, Martin A.
Beutel, Fabian
Schütte, Jonas
Gehring, Helge
Häußler, Matthias
Pernice, Wolfram
Schuck, Carsten
description Fast and efficient detection of single photons with high timing accuracy is a crucial requirement in most quantum optics experiments and enables novel sensing and imaging solutions. Superconducting nanowire single-photon detectors (SNSPD) achieve technology-leading performance in terms of detection efficiency, dark count rate, timing jitter, and detector dead times. However, conventional SNSPDs with high system detection efficiency typically rely on resonant enhancement of the absorption efficiency, thus only achieving attractive detector benchmarks over narrow spectral windows. Waveguide-integrated SNSPDs allow for leveraging the wideband material absorption in superconducting nanowires by absorbing light in a traveling-wave geometry but have been limited to low system detection efficiencies due to interface losses when coupling to optical fibers. Here, we show how high system detection efficiencies of 22%–73% are realized over a broad wavelength range from 532 nm to 1640 nm in a single waveguide-integrated SNSPD device. We accomplish efficient coupling between optical fibers and waveguide-integrated nanowire detectors by employing a 3D interface, produced in direct laser writing, that relies on total internal reflection for achieving a broad transmission bandwidth. We further find low timing jitter of 25.7 ps and detector decay times of 9.8 ns, allowing for single-photon counting with high repetition rates up to 100 MHz. Our work paves the way for an efficient single-photon detector solution that combines the spectral requirements of an extremely wide range of quantum optics experiments in a single device. The coupling approach and SNSPD-integration with nanophotonic circuits are further well-suited for realizing large-scale detector arrays.
doi_str_mv 10.1063/5.0046057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512930107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512930107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-121b1b3c10d7b96782c15450c8670e1aa30a43947cc0afe8e81114b77c2f854d3</originalsourceid><addsrcrecordid>eNqd0N9LwzAQB_AgCs7pg_9BwSeFzlzTNN2jDn_BwBd9DmlybTO2pibpxv57Ozbw3Zcc4T7ccV9CboHOgBbskc8ozQvKxRmZABUiZQDlOZlQSllazDlckqsQVuOXZ4xNyPrZO2Uq1Zlkp7bYDNZgaruIjVcRTRKGHr12nRl0tF2ThPFZY9q3LrouMRhRR-dDsrOxTVrbtEnYh4ibU8uOCOvaaoud3l-Ti1qtA96c6pR8v758Ld7T5efbx-JpmWpWZDGFDCqomAZqRDUvRJlp4DmnuiwERVCKUZWzeS60pqrGEksAyCshdFaXPDdsSu6Oc3vvfgYMUa7c4Ltxpcw4ZHNGx2hGdX9U2rsQPNay93aj_F4ClYcwJZenMEf7cLRB26gOZ_0Pb53_g7I3NfsF_ZaENA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512930107</pqid></control><display><type>article</type><title>Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wolff, Martin A. ; Beutel, Fabian ; Schütte, Jonas ; Gehring, Helge ; Häußler, Matthias ; Pernice, Wolfram ; Schuck, Carsten</creator><creatorcontrib>Wolff, Martin A. ; Beutel, Fabian ; Schütte, Jonas ; Gehring, Helge ; Häußler, Matthias ; Pernice, Wolfram ; Schuck, Carsten</creatorcontrib><description>Fast and efficient detection of single photons with high timing accuracy is a crucial requirement in most quantum optics experiments and enables novel sensing and imaging solutions. Superconducting nanowire single-photon detectors (SNSPD) achieve technology-leading performance in terms of detection efficiency, dark count rate, timing jitter, and detector dead times. However, conventional SNSPDs with high system detection efficiency typically rely on resonant enhancement of the absorption efficiency, thus only achieving attractive detector benchmarks over narrow spectral windows. Waveguide-integrated SNSPDs allow for leveraging the wideband material absorption in superconducting nanowires by absorbing light in a traveling-wave geometry but have been limited to low system detection efficiencies due to interface losses when coupling to optical fibers. Here, we show how high system detection efficiencies of 22%–73% are realized over a broad wavelength range from 532 nm to 1640 nm in a single waveguide-integrated SNSPD device. We accomplish efficient coupling between optical fibers and waveguide-integrated nanowire detectors by employing a 3D interface, produced in direct laser writing, that relies on total internal reflection for achieving a broad transmission bandwidth. We further find low timing jitter of 25.7 ps and detector decay times of 9.8 ns, allowing for single-photon counting with high repetition rates up to 100 MHz. Our work paves the way for an efficient single-photon detector solution that combines the spectral requirements of an extremely wide range of quantum optics experiments in a single device. The coupling approach and SNSPD-integration with nanophotonic circuits are further well-suited for realizing large-scale detector arrays.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0046057</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bandwidths ; Broadband ; Coupling ; Detectors ; Direct laser writing ; Efficiency ; Material absorption ; Nanowires ; Optical fibers ; Optics ; Photons ; Quantum optics ; Sensors ; Superconductivity ; Timing jitter ; Vibration ; Waveguides</subject><ispartof>Applied physics letters, 2021-04, Vol.118 (15)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-121b1b3c10d7b96782c15450c8670e1aa30a43947cc0afe8e81114b77c2f854d3</citedby><cites>FETCH-LOGICAL-c362t-121b1b3c10d7b96782c15450c8670e1aa30a43947cc0afe8e81114b77c2f854d3</cites><orcidid>0000-0003-4569-4213 ; 0000-0003-4779-0962 ; 0000-0002-9220-4021 ; 0000-0002-3034-3528 ; 0000-0002-5879-3985 ; 0000-0001-9087-442X ; 0000-0002-1632-9797</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0046057$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,792,4500,27911,27912,76139</link.rule.ids></links><search><creatorcontrib>Wolff, Martin A.</creatorcontrib><creatorcontrib>Beutel, Fabian</creatorcontrib><creatorcontrib>Schütte, Jonas</creatorcontrib><creatorcontrib>Gehring, Helge</creatorcontrib><creatorcontrib>Häußler, Matthias</creatorcontrib><creatorcontrib>Pernice, Wolfram</creatorcontrib><creatorcontrib>Schuck, Carsten</creatorcontrib><title>Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency</title><title>Applied physics letters</title><description>Fast and efficient detection of single photons with high timing accuracy is a crucial requirement in most quantum optics experiments and enables novel sensing and imaging solutions. Superconducting nanowire single-photon detectors (SNSPD) achieve technology-leading performance in terms of detection efficiency, dark count rate, timing jitter, and detector dead times. However, conventional SNSPDs with high system detection efficiency typically rely on resonant enhancement of the absorption efficiency, thus only achieving attractive detector benchmarks over narrow spectral windows. Waveguide-integrated SNSPDs allow for leveraging the wideband material absorption in superconducting nanowires by absorbing light in a traveling-wave geometry but have been limited to low system detection efficiencies due to interface losses when coupling to optical fibers. Here, we show how high system detection efficiencies of 22%–73% are realized over a broad wavelength range from 532 nm to 1640 nm in a single waveguide-integrated SNSPD device. We accomplish efficient coupling between optical fibers and waveguide-integrated nanowire detectors by employing a 3D interface, produced in direct laser writing, that relies on total internal reflection for achieving a broad transmission bandwidth. We further find low timing jitter of 25.7 ps and detector decay times of 9.8 ns, allowing for single-photon counting with high repetition rates up to 100 MHz. Our work paves the way for an efficient single-photon detector solution that combines the spectral requirements of an extremely wide range of quantum optics experiments in a single device. The coupling approach and SNSPD-integration with nanophotonic circuits are further well-suited for realizing large-scale detector arrays.</description><subject>Applied physics</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Coupling</subject><subject>Detectors</subject><subject>Direct laser writing</subject><subject>Efficiency</subject><subject>Material absorption</subject><subject>Nanowires</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Photons</subject><subject>Quantum optics</subject><subject>Sensors</subject><subject>Superconductivity</subject><subject>Timing jitter</subject><subject>Vibration</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0N9LwzAQB_AgCs7pg_9BwSeFzlzTNN2jDn_BwBd9DmlybTO2pibpxv57Ozbw3Zcc4T7ccV9CboHOgBbskc8ozQvKxRmZABUiZQDlOZlQSllazDlckqsQVuOXZ4xNyPrZO2Uq1Zlkp7bYDNZgaruIjVcRTRKGHr12nRl0tF2ThPFZY9q3LrouMRhRR-dDsrOxTVrbtEnYh4ibU8uOCOvaaoud3l-Ti1qtA96c6pR8v758Ld7T5efbx-JpmWpWZDGFDCqomAZqRDUvRJlp4DmnuiwERVCKUZWzeS60pqrGEksAyCshdFaXPDdsSu6Oc3vvfgYMUa7c4Ltxpcw4ZHNGx2hGdX9U2rsQPNay93aj_F4ClYcwJZenMEf7cLRB26gOZ_0Pb53_g7I3NfsF_ZaENA</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Wolff, Martin A.</creator><creator>Beutel, Fabian</creator><creator>Schütte, Jonas</creator><creator>Gehring, Helge</creator><creator>Häußler, Matthias</creator><creator>Pernice, Wolfram</creator><creator>Schuck, Carsten</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0000-0003-4779-0962</orcidid><orcidid>https://orcid.org/0000-0002-9220-4021</orcidid><orcidid>https://orcid.org/0000-0002-3034-3528</orcidid><orcidid>https://orcid.org/0000-0002-5879-3985</orcidid><orcidid>https://orcid.org/0000-0001-9087-442X</orcidid><orcidid>https://orcid.org/0000-0002-1632-9797</orcidid></search><sort><creationdate>20210412</creationdate><title>Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency</title><author>Wolff, Martin A. ; Beutel, Fabian ; Schütte, Jonas ; Gehring, Helge ; Häußler, Matthias ; Pernice, Wolfram ; Schuck, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-121b1b3c10d7b96782c15450c8670e1aa30a43947cc0afe8e81114b77c2f854d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Coupling</topic><topic>Detectors</topic><topic>Direct laser writing</topic><topic>Efficiency</topic><topic>Material absorption</topic><topic>Nanowires</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Photons</topic><topic>Quantum optics</topic><topic>Sensors</topic><topic>Superconductivity</topic><topic>Timing jitter</topic><topic>Vibration</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolff, Martin A.</creatorcontrib><creatorcontrib>Beutel, Fabian</creatorcontrib><creatorcontrib>Schütte, Jonas</creatorcontrib><creatorcontrib>Gehring, Helge</creatorcontrib><creatorcontrib>Häußler, Matthias</creatorcontrib><creatorcontrib>Pernice, Wolfram</creatorcontrib><creatorcontrib>Schuck, Carsten</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolff, Martin A.</au><au>Beutel, Fabian</au><au>Schütte, Jonas</au><au>Gehring, Helge</au><au>Häußler, Matthias</au><au>Pernice, Wolfram</au><au>Schuck, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency</atitle><jtitle>Applied physics letters</jtitle><date>2021-04-12</date><risdate>2021</risdate><volume>118</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Fast and efficient detection of single photons with high timing accuracy is a crucial requirement in most quantum optics experiments and enables novel sensing and imaging solutions. Superconducting nanowire single-photon detectors (SNSPD) achieve technology-leading performance in terms of detection efficiency, dark count rate, timing jitter, and detector dead times. However, conventional SNSPDs with high system detection efficiency typically rely on resonant enhancement of the absorption efficiency, thus only achieving attractive detector benchmarks over narrow spectral windows. Waveguide-integrated SNSPDs allow for leveraging the wideband material absorption in superconducting nanowires by absorbing light in a traveling-wave geometry but have been limited to low system detection efficiencies due to interface losses when coupling to optical fibers. Here, we show how high system detection efficiencies of 22%–73% are realized over a broad wavelength range from 532 nm to 1640 nm in a single waveguide-integrated SNSPD device. We accomplish efficient coupling between optical fibers and waveguide-integrated nanowire detectors by employing a 3D interface, produced in direct laser writing, that relies on total internal reflection for achieving a broad transmission bandwidth. We further find low timing jitter of 25.7 ps and detector decay times of 9.8 ns, allowing for single-photon counting with high repetition rates up to 100 MHz. Our work paves the way for an efficient single-photon detector solution that combines the spectral requirements of an extremely wide range of quantum optics experiments in a single device. The coupling approach and SNSPD-integration with nanophotonic circuits are further well-suited for realizing large-scale detector arrays.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046057</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4569-4213</orcidid><orcidid>https://orcid.org/0000-0003-4779-0962</orcidid><orcidid>https://orcid.org/0000-0002-9220-4021</orcidid><orcidid>https://orcid.org/0000-0002-3034-3528</orcidid><orcidid>https://orcid.org/0000-0002-5879-3985</orcidid><orcidid>https://orcid.org/0000-0001-9087-442X</orcidid><orcidid>https://orcid.org/0000-0002-1632-9797</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-04, Vol.118 (15)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2512930107
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Bandwidths
Broadband
Coupling
Detectors
Direct laser writing
Efficiency
Material absorption
Nanowires
Optical fibers
Optics
Photons
Quantum optics
Sensors
Superconductivity
Timing jitter
Vibration
Waveguides
title Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20waveguide-integrated%20superconducting%20single-photon%20detectors%20with%20high%20system%20detection%20efficiency&rft.jtitle=Applied%20physics%20letters&rft.au=Wolff,%20Martin%20A.&rft.date=2021-04-12&rft.volume=118&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0046057&rft_dat=%3Cproquest_cross%3E2512930107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512930107&rft_id=info:pmid/&rfr_iscdi=true