Decision tree analysis of commuter mode choice in Baguio City, Philippines
Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning t...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2021-03, Vol.1109 (1), p.12059 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12059 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 1109 |
creator | Gue, I H V Soliman, J De Guzman, M Cabredo, R Fillone, A Lopez, N S Biona, J B M |
description | Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study. |
doi_str_mv | 10.1088/1757-899X/1109/1/012059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512928390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512928390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</originalsourceid><addsrcrecordid>eNo90E1PwzAMBuAIgcQY_AYicaXUSdslOcIYX5oEB5C4RVnqsExrU5L2sH_PqqGdbMuvLOsh5JrBHQMpcyYqkUmlvnPGQOUsB8ahUidkctycHnvJzslFShuAmShLmJC3R7Q--dDSPiJS05rtLvlEg6M2NM3QY6RNqJHadfAWqW_pg_kZfKBz3-9u6cfab33X-RbTJTlzZpvw6r9OydfT4nP-ki3fn1_n98vMMlGojDvOK-7KmldQ1UWpuLIcnUSo3QzNqlIcLTghnLRSgjEoZkIIzspVuZ9cMSU3h7tdDL8Dpl5vwhD3jyfNK8YVl4WCfUocUjaGlCI63UXfmLjTDPQIp0cSPfLoEU4zfYAr_gAtd2DG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512928390</pqid></control><display><type>article</type><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</creator><creatorcontrib>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</creatorcontrib><description>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1109/1/012059</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Decision analysis ; Decision trees ; Income ; Machine learning ; Modal choice</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12059</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gue, I H V</creatorcontrib><creatorcontrib>Soliman, J</creatorcontrib><creatorcontrib>De Guzman, M</creatorcontrib><creatorcontrib>Cabredo, R</creatorcontrib><creatorcontrib>Fillone, A</creatorcontrib><creatorcontrib>Lopez, N S</creatorcontrib><creatorcontrib>Biona, J B M</creatorcontrib><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><title>IOP conference series. Materials Science and Engineering</title><description>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</description><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Income</subject><subject>Machine learning</subject><subject>Modal choice</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo90E1PwzAMBuAIgcQY_AYicaXUSdslOcIYX5oEB5C4RVnqsExrU5L2sH_PqqGdbMuvLOsh5JrBHQMpcyYqkUmlvnPGQOUsB8ahUidkctycHnvJzslFShuAmShLmJC3R7Q--dDSPiJS05rtLvlEg6M2NM3QY6RNqJHadfAWqW_pg_kZfKBz3-9u6cfab33X-RbTJTlzZpvw6r9OydfT4nP-ki3fn1_n98vMMlGojDvOK-7KmldQ1UWpuLIcnUSo3QzNqlIcLTghnLRSgjEoZkIIzspVuZ9cMSU3h7tdDL8Dpl5vwhD3jyfNK8YVl4WCfUocUjaGlCI63UXfmLjTDPQIp0cSPfLoEU4zfYAr_gAtd2DG</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Gue, I H V</creator><creator>Soliman, J</creator><creator>De Guzman, M</creator><creator>Cabredo, R</creator><creator>Fillone, A</creator><creator>Lopez, N S</creator><creator>Biona, J B M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><author>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Income</topic><topic>Machine learning</topic><topic>Modal choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gue, I H V</creatorcontrib><creatorcontrib>Soliman, J</creatorcontrib><creatorcontrib>De Guzman, M</creatorcontrib><creatorcontrib>Cabredo, R</creatorcontrib><creatorcontrib>Fillone, A</creatorcontrib><creatorcontrib>Lopez, N S</creatorcontrib><creatorcontrib>Biona, J B M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gue, I H V</au><au>Soliman, J</au><au>De Guzman, M</au><au>Cabredo, R</au><au>Fillone, A</au><au>Lopez, N S</au><au>Biona, J B M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision tree analysis of commuter mode choice in Baguio City, Philippines</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1109</volume><issue>1</issue><spage>12059</spage><pages>12059-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1109/1/012059</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12059 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2512928390 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Decision analysis Decision trees Income Machine learning Modal choice |
title | Decision tree analysis of commuter mode choice in Baguio City, Philippines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20tree%20analysis%20of%20commuter%20mode%20choice%20in%20Baguio%20City,%20Philippines&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Gue,%20I%20H%20V&rft.date=2021-03-01&rft.volume=1109&rft.issue=1&rft.spage=12059&rft.pages=12059-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1109/1/012059&rft_dat=%3Cproquest_cross%3E2512928390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512928390&rft_id=info:pmid/&rfr_iscdi=true |