Decision tree analysis of commuter mode choice in Baguio City, Philippines

Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-03, Vol.1109 (1), p.12059
Hauptverfasser: Gue, I H V, Soliman, J, De Guzman, M, Cabredo, R, Fillone, A, Lopez, N S, Biona, J B M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12059
container_title IOP conference series. Materials Science and Engineering
container_volume 1109
creator Gue, I H V
Soliman, J
De Guzman, M
Cabredo, R
Fillone, A
Lopez, N S
Biona, J B M
description Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.
doi_str_mv 10.1088/1757-899X/1109/1/012059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512928390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512928390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</originalsourceid><addsrcrecordid>eNo90E1PwzAMBuAIgcQY_AYicaXUSdslOcIYX5oEB5C4RVnqsExrU5L2sH_PqqGdbMuvLOsh5JrBHQMpcyYqkUmlvnPGQOUsB8ahUidkctycHnvJzslFShuAmShLmJC3R7Q--dDSPiJS05rtLvlEg6M2NM3QY6RNqJHadfAWqW_pg_kZfKBz3-9u6cfab33X-RbTJTlzZpvw6r9OydfT4nP-ki3fn1_n98vMMlGojDvOK-7KmldQ1UWpuLIcnUSo3QzNqlIcLTghnLRSgjEoZkIIzspVuZ9cMSU3h7tdDL8Dpl5vwhD3jyfNK8YVl4WCfUocUjaGlCI63UXfmLjTDPQIp0cSPfLoEU4zfYAr_gAtd2DG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512928390</pqid></control><display><type>article</type><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</creator><creatorcontrib>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</creatorcontrib><description>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1109/1/012059</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Decision analysis ; Decision trees ; Income ; Machine learning ; Modal choice</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12059</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gue, I H V</creatorcontrib><creatorcontrib>Soliman, J</creatorcontrib><creatorcontrib>De Guzman, M</creatorcontrib><creatorcontrib>Cabredo, R</creatorcontrib><creatorcontrib>Fillone, A</creatorcontrib><creatorcontrib>Lopez, N S</creatorcontrib><creatorcontrib>Biona, J B M</creatorcontrib><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><title>IOP conference series. Materials Science and Engineering</title><description>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</description><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Income</subject><subject>Machine learning</subject><subject>Modal choice</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo90E1PwzAMBuAIgcQY_AYicaXUSdslOcIYX5oEB5C4RVnqsExrU5L2sH_PqqGdbMuvLOsh5JrBHQMpcyYqkUmlvnPGQOUsB8ahUidkctycHnvJzslFShuAmShLmJC3R7Q--dDSPiJS05rtLvlEg6M2NM3QY6RNqJHadfAWqW_pg_kZfKBz3-9u6cfab33X-RbTJTlzZpvw6r9OydfT4nP-ki3fn1_n98vMMlGojDvOK-7KmldQ1UWpuLIcnUSo3QzNqlIcLTghnLRSgjEoZkIIzspVuZ9cMSU3h7tdDL8Dpl5vwhD3jyfNK8YVl4WCfUocUjaGlCI63UXfmLjTDPQIp0cSPfLoEU4zfYAr_gAtd2DG</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Gue, I H V</creator><creator>Soliman, J</creator><creator>De Guzman, M</creator><creator>Cabredo, R</creator><creator>Fillone, A</creator><creator>Lopez, N S</creator><creator>Biona, J B M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>Decision tree analysis of commuter mode choice in Baguio City, Philippines</title><author>Gue, I H V ; Soliman, J ; De Guzman, M ; Cabredo, R ; Fillone, A ; Lopez, N S ; Biona, J B M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1739-2f2252f4d2505d34929c2ef8e0df6eab592ec0f77f8c880aae76777214b40aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Income</topic><topic>Machine learning</topic><topic>Modal choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gue, I H V</creatorcontrib><creatorcontrib>Soliman, J</creatorcontrib><creatorcontrib>De Guzman, M</creatorcontrib><creatorcontrib>Cabredo, R</creatorcontrib><creatorcontrib>Fillone, A</creatorcontrib><creatorcontrib>Lopez, N S</creatorcontrib><creatorcontrib>Biona, J B M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gue, I H V</au><au>Soliman, J</au><au>De Guzman, M</au><au>Cabredo, R</au><au>Fillone, A</au><au>Lopez, N S</au><au>Biona, J B M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision tree analysis of commuter mode choice in Baguio City, Philippines</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1109</volume><issue>1</issue><spage>12059</spage><pages>12059-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Transportation is a multidisciplinary system. Solving its issues would require the knowledge of social, economic, engineering, environmental, and technological disciplines. Emerging techniques used in problem-solving involve the use of machine learning techniques. In this study, a machine learning technique, decision tree, is used for mode choice analysis in Baguio City, Philippines. Using data from a household survey, the developed model uncovers the most significant factors affecting mode choice of residents in the city. The results highlight the role of income, which is related to the individuals’ career level and stage in life. Interestingly, a mid-level income group seems to be highly inclined towards private vehicle use. To conclude, the authors note that the primary advantage of a decision tree is its simplicity and straightforward results interpretation, which is paramount in policymaking. For future work, the authors recommend exploring larger decision tree models for mode choice and conducting a validation interview of the insights obtained from the study.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1109/1/012059</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12059
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2512928390
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Decision analysis
Decision trees
Income
Machine learning
Modal choice
title Decision tree analysis of commuter mode choice in Baguio City, Philippines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20tree%20analysis%20of%20commuter%20mode%20choice%20in%20Baguio%20City,%20Philippines&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Gue,%20I%20H%20V&rft.date=2021-03-01&rft.volume=1109&rft.issue=1&rft.spage=12059&rft.pages=12059-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1109/1/012059&rft_dat=%3Cproquest_cross%3E2512928390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512928390&rft_id=info:pmid/&rfr_iscdi=true