Object detection for drones on Raspberry Pi potentials and challenges
The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeede...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2021-03, Vol.1109 (1), p.12033 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12033 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 1109 |
creator | Khoi, Tran Quang Quang, Nguyen Anh Hieu, Ngo Khanh |
description | The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module. |
doi_str_mv | 10.1088/1757-899X/1109/1/012033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512916446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512916446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BgOea2eStEmPsqwfsLAiCt5C2qTaUpuadA_7722p7Omdj4cZeAi5RbhHUCpFmclEFcVnighFiikgA87PyOq0OT_VCi_JVYwtQC6FgBXZ7svWVSO1bpyi8T2tfaA2-N5FOnVvJg6lC-FIXxs6-NH1Y2O6SE1vafVtus71Xy5ek4t6mrqb_1yTj8ft--Y52e2fXjYPu6RCWfDEcCGlQiuBGcdRZazMpDAKuORoc6gYKKEYr0uZQ17KzFnOJiYDVlssLF-Tu-XuEPzvwcVRt_4Q-umlZhmyAnMh8omSC1UFH2NwtR5C82PCUSPo2ZmebejZjJ6dadSLM_4Hc1tdsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512916446</pqid></control><display><type>article</type><title>Object detection for drones on Raspberry Pi potentials and challenges</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</creator><creatorcontrib>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</creatorcontrib><description>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1109/1/012033</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Modules ; Object recognition</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12033</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</citedby><cites>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khoi, Tran Quang</creatorcontrib><creatorcontrib>Quang, Nguyen Anh</creatorcontrib><creatorcontrib>Hieu, Ngo Khanh</creatorcontrib><title>Object detection for drones on Raspberry Pi potentials and challenges</title><title>IOP conference series. Materials Science and Engineering</title><description>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</description><subject>Artificial neural networks</subject><subject>Modules</subject><subject>Object recognition</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE1LxDAQhoMouK7-BgOea2eStEmPsqwfsLAiCt5C2qTaUpuadA_7722p7Omdj4cZeAi5RbhHUCpFmclEFcVnighFiikgA87PyOq0OT_VCi_JVYwtQC6FgBXZ7svWVSO1bpyi8T2tfaA2-N5FOnVvJg6lC-FIXxs6-NH1Y2O6SE1vafVtus71Xy5ek4t6mrqb_1yTj8ft--Y52e2fXjYPu6RCWfDEcCGlQiuBGcdRZazMpDAKuORoc6gYKKEYr0uZQ17KzFnOJiYDVlssLF-Tu-XuEPzvwcVRt_4Q-umlZhmyAnMh8omSC1UFH2NwtR5C82PCUSPo2ZmebejZjJ6dadSLM_4Hc1tdsg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Khoi, Tran Quang</creator><creator>Quang, Nguyen Anh</creator><creator>Hieu, Ngo Khanh</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>Object detection for drones on Raspberry Pi potentials and challenges</title><author>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Modules</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoi, Tran Quang</creatorcontrib><creatorcontrib>Quang, Nguyen Anh</creatorcontrib><creatorcontrib>Hieu, Ngo Khanh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoi, Tran Quang</au><au>Quang, Nguyen Anh</au><au>Hieu, Ngo Khanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object detection for drones on Raspberry Pi potentials and challenges</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1109</volume><issue>1</issue><spage>12033</spage><pages>12033-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1109/1/012033</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12033 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2512916446 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Modules Object recognition |
title | Object detection for drones on Raspberry Pi potentials and challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20detection%20for%20drones%20on%20Raspberry%20Pi%20potentials%20and%20challenges&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Khoi,%20Tran%20Quang&rft.date=2021-03-01&rft.volume=1109&rft.issue=1&rft.spage=12033&rft.pages=12033-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1109/1/012033&rft_dat=%3Cproquest_cross%3E2512916446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512916446&rft_id=info:pmid/&rfr_iscdi=true |