Object detection for drones on Raspberry Pi potentials and challenges

The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2021-03, Vol.1109 (1), p.12033
Hauptverfasser: Khoi, Tran Quang, Quang, Nguyen Anh, Hieu, Ngo Khanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12033
container_title IOP conference series. Materials Science and Engineering
container_volume 1109
creator Khoi, Tran Quang
Quang, Nguyen Anh
Hieu, Ngo Khanh
description The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.
doi_str_mv 10.1088/1757-899X/1109/1/012033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512916446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512916446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BgOea2eStEmPsqwfsLAiCt5C2qTaUpuadA_7722p7Omdj4cZeAi5RbhHUCpFmclEFcVnighFiikgA87PyOq0OT_VCi_JVYwtQC6FgBXZ7svWVSO1bpyi8T2tfaA2-N5FOnVvJg6lC-FIXxs6-NH1Y2O6SE1vafVtus71Xy5ek4t6mrqb_1yTj8ft--Y52e2fXjYPu6RCWfDEcCGlQiuBGcdRZazMpDAKuORoc6gYKKEYr0uZQ17KzFnOJiYDVlssLF-Tu-XuEPzvwcVRt_4Q-umlZhmyAnMh8omSC1UFH2NwtR5C82PCUSPo2ZmebejZjJ6dadSLM_4Hc1tdsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512916446</pqid></control><display><type>article</type><title>Object detection for drones on Raspberry Pi potentials and challenges</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</creator><creatorcontrib>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</creatorcontrib><description>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/1109/1/012033</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Modules ; Object recognition</subject><ispartof>IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12033</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</citedby><cites>FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khoi, Tran Quang</creatorcontrib><creatorcontrib>Quang, Nguyen Anh</creatorcontrib><creatorcontrib>Hieu, Ngo Khanh</creatorcontrib><title>Object detection for drones on Raspberry Pi potentials and challenges</title><title>IOP conference series. Materials Science and Engineering</title><description>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</description><subject>Artificial neural networks</subject><subject>Modules</subject><subject>Object recognition</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE1LxDAQhoMouK7-BgOea2eStEmPsqwfsLAiCt5C2qTaUpuadA_7722p7Omdj4cZeAi5RbhHUCpFmclEFcVnighFiikgA87PyOq0OT_VCi_JVYwtQC6FgBXZ7svWVSO1bpyi8T2tfaA2-N5FOnVvJg6lC-FIXxs6-NH1Y2O6SE1vafVtus71Xy5ek4t6mrqb_1yTj8ft--Y52e2fXjYPu6RCWfDEcCGlQiuBGcdRZazMpDAKuORoc6gYKKEYr0uZQ17KzFnOJiYDVlssLF-Tu-XuEPzvwcVRt_4Q-umlZhmyAnMh8omSC1UFH2NwtR5C82PCUSPo2ZmebejZjJ6dadSLM_4Hc1tdsg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Khoi, Tran Quang</creator><creator>Quang, Nguyen Anh</creator><creator>Hieu, Ngo Khanh</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210301</creationdate><title>Object detection for drones on Raspberry Pi potentials and challenges</title><author>Khoi, Tran Quang ; Quang, Nguyen Anh ; Hieu, Ngo Khanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1793-a347781d702ae31852b574a803731d60c2084823fb7606b75ed322b5502fd19d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Modules</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoi, Tran Quang</creatorcontrib><creatorcontrib>Quang, Nguyen Anh</creatorcontrib><creatorcontrib>Hieu, Ngo Khanh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoi, Tran Quang</au><au>Quang, Nguyen Anh</au><au>Hieu, Ngo Khanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object detection for drones on Raspberry Pi potentials and challenges</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1109</volume><issue>1</issue><spage>12033</spage><pages>12033-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The paper presents preliminary research results about implementing an object detection program on a Single Board Computer. These results are used later to develop applications for drones. The object identification program is developed in Python using the TensorFlow library. The authors have succeeded in implementing and testing this object identification module using the artificial neural network model SSDMobileNet V2 on the Raspberry Pi 3B+. The results in this paper demonstrate the potential of this module for further development in the future. Based on the simulation and real-world results, the authors showed that a good outcome is achievable with limited resources for the AI module. Along with a high-precision object detection feature, this module can also estimate the distance and velocity of the “human” object with good accuracy. Besides, the paper also proposes several solutions to increase the performance and most importantly, the real-time feature of the developed module.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/1109/1/012033</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2021-03, Vol.1109 (1), p.12033
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2512916446
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Artificial neural networks
Modules
Object recognition
title Object detection for drones on Raspberry Pi potentials and challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20detection%20for%20drones%20on%20Raspberry%20Pi%20potentials%20and%20challenges&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Khoi,%20Tran%20Quang&rft.date=2021-03-01&rft.volume=1109&rft.issue=1&rft.spage=12033&rft.pages=12033-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/1109/1/012033&rft_dat=%3Cproquest_cross%3E2512916446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512916446&rft_id=info:pmid/&rfr_iscdi=true