Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)

The results of data analysis are known from the Agricultural Research and Development Agency that the cropping pattern in Deli Serdang Regency was initially rice-rice with changes in varieties, the cropping pattern changed to the rice-rice-rice pattern. The continuous rice cropping pattern for some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-03, Vol.1811 (1), p.12075
Hauptverfasser: Simamora, Elmanani, Yusardi, Wahyunita, Mansyur, Abil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12075
container_title Journal of physics. Conference series
container_volume 1811
creator Simamora, Elmanani
Yusardi, Wahyunita
Mansyur, Abil
description The results of data analysis are known from the Agricultural Research and Development Agency that the cropping pattern in Deli Serdang Regency was initially rice-rice with changes in varieties, the cropping pattern changed to the rice-rice-rice pattern. The continuous rice cropping pattern for some time eventually caused new problems, namely the exploitation of rice pests (leafhoppers, Nephotettix Virescens, Orsealia Oryzae) and causing crop failure. This exploitative rice pest is one of the causes of the decline in agricultural productivity in the Deli Serdang Regency. The purpose of this study provides alternative solutions to increase agricultural production in Deli Serdang with modeling cropping pattern most profitable based on the placement of planting time that best suits the needs of rainfall in Deli Serdang that predicted using Neural Network Backpropagation so it can be used as guidelines in the utilization of agricultural land in Deli Serdang Regency. The model Backpropagation best in this study is 12-2-1, with the learning rate best 0.08 and best momentum 0.99 with Mean Square Erro testing is 0.0260. Based on the planting calendar and cropping models obtained from rainfall predictions, the cropping patterns that can be applied in Deli Serdang Regency are modeled, namely the cropping patterns of palawija-rice-rice, palawija-rice-palawija, palawija-palawija-palawija, and palawija-palawija-rice.
doi_str_mv 10.1088/1742-6596/1811/1/012075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512915610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512915610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2325-519ddca9c9038592c167689457eba1cd346e3e60203c7d82fc2f79691d15bfda3</originalsourceid><addsrcrecordid>eNpFUdFOwjAUXYwmIvoNNvFFE-d6O7qtvgkoGkEJyHNT2o4M5oZdF8PH-K92zOB9uTfnnpyTe4_nXQK-A5wkAcQ94keURQEkAAEEGAiO6ZHXOWyOD3OSnHpnVbXGOHQVd7yfaS4KmxUrNBXWalOgSal03gB9UWmFygLNRFakIs_R1GiVSZs5bFG1FLnZmnIrVmKPPhibpZnMRI7edG32zX6XZoOuB04NzW2tdveoP3kd_asOhRW3aOhM0VwbJZzuTK90IXc3596Jo1T64q93vcXT48fg2R-_j14GD2NfkpBQnwJTSgomGQ4TyoiEKI4S1qOxXgqQKuxFOtQRJjiUsUpIKkkas4iBArpMlQi73lWr6475qnVl-bqsTeEsOaFAGNAIsGPFLUuasqqMTvnWZJ_C7Dhg3mTBmy_z5uO8yYIDb7MIfwFc33z3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512915610</pqid></control><display><type>article</type><title>Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Simamora, Elmanani ; Yusardi, Wahyunita ; Mansyur, Abil</creator><creatorcontrib>Simamora, Elmanani ; Yusardi, Wahyunita ; Mansyur, Abil</creatorcontrib><description>The results of data analysis are known from the Agricultural Research and Development Agency that the cropping pattern in Deli Serdang Regency was initially rice-rice with changes in varieties, the cropping pattern changed to the rice-rice-rice pattern. The continuous rice cropping pattern for some time eventually caused new problems, namely the exploitation of rice pests (leafhoppers, Nephotettix Virescens, Orsealia Oryzae) and causing crop failure. This exploitative rice pest is one of the causes of the decline in agricultural productivity in the Deli Serdang Regency. The purpose of this study provides alternative solutions to increase agricultural production in Deli Serdang with modeling cropping pattern most profitable based on the placement of planting time that best suits the needs of rainfall in Deli Serdang that predicted using Neural Network Backpropagation so it can be used as guidelines in the utilization of agricultural land in Deli Serdang Regency. The model Backpropagation best in this study is 12-2-1, with the learning rate best 0.08 and best momentum 0.99 with Mean Square Erro testing is 0.0260. Based on the planting calendar and cropping models obtained from rainfall predictions, the cropping patterns that can be applied in Deli Serdang Regency are modeled, namely the cropping patterns of palawija-rice-rice, palawija-rice-palawija, palawija-palawija-palawija, and palawija-palawija-rice.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1811/1/012075</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Agricultural land ; Agricultural production ; Artificial neural networks ; Back propagation ; Back propagation networks ; Data analysis ; Modelling ; Neural networks ; Pests ; Physics ; Planting ; R&amp;D ; Rainfall ; Research &amp; development ; Rice</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1811 (1), p.12075</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Simamora, Elmanani</creatorcontrib><creatorcontrib>Yusardi, Wahyunita</creatorcontrib><creatorcontrib>Mansyur, Abil</creatorcontrib><title>Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)</title><title>Journal of physics. Conference series</title><description>The results of data analysis are known from the Agricultural Research and Development Agency that the cropping pattern in Deli Serdang Regency was initially rice-rice with changes in varieties, the cropping pattern changed to the rice-rice-rice pattern. The continuous rice cropping pattern for some time eventually caused new problems, namely the exploitation of rice pests (leafhoppers, Nephotettix Virescens, Orsealia Oryzae) and causing crop failure. This exploitative rice pest is one of the causes of the decline in agricultural productivity in the Deli Serdang Regency. The purpose of this study provides alternative solutions to increase agricultural production in Deli Serdang with modeling cropping pattern most profitable based on the placement of planting time that best suits the needs of rainfall in Deli Serdang that predicted using Neural Network Backpropagation so it can be used as guidelines in the utilization of agricultural land in Deli Serdang Regency. The model Backpropagation best in this study is 12-2-1, with the learning rate best 0.08 and best momentum 0.99 with Mean Square Erro testing is 0.0260. Based on the planting calendar and cropping models obtained from rainfall predictions, the cropping patterns that can be applied in Deli Serdang Regency are modeled, namely the cropping patterns of palawija-rice-rice, palawija-rice-palawija, palawija-palawija-palawija, and palawija-palawija-rice.</description><subject>Agricultural land</subject><subject>Agricultural production</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Data analysis</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Pests</subject><subject>Physics</subject><subject>Planting</subject><subject>R&amp;D</subject><subject>Rainfall</subject><subject>Research &amp; development</subject><subject>Rice</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFUdFOwjAUXYwmIvoNNvFFE-d6O7qtvgkoGkEJyHNT2o4M5oZdF8PH-K92zOB9uTfnnpyTe4_nXQK-A5wkAcQ94keURQEkAAEEGAiO6ZHXOWyOD3OSnHpnVbXGOHQVd7yfaS4KmxUrNBXWalOgSal03gB9UWmFygLNRFakIs_R1GiVSZs5bFG1FLnZmnIrVmKPPhibpZnMRI7edG32zX6XZoOuB04NzW2tdveoP3kd_asOhRW3aOhM0VwbJZzuTK90IXc3596Jo1T64q93vcXT48fg2R-_j14GD2NfkpBQnwJTSgomGQ4TyoiEKI4S1qOxXgqQKuxFOtQRJjiUsUpIKkkas4iBArpMlQi73lWr6475qnVl-bqsTeEsOaFAGNAIsGPFLUuasqqMTvnWZJ_C7Dhg3mTBmy_z5uO8yYIDb7MIfwFc33z3</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Simamora, Elmanani</creator><creator>Yusardi, Wahyunita</creator><creator>Mansyur, Abil</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)</title><author>Simamora, Elmanani ; Yusardi, Wahyunita ; Mansyur, Abil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2325-519ddca9c9038592c167689457eba1cd346e3e60203c7d82fc2f79691d15bfda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural land</topic><topic>Agricultural production</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Data analysis</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Pests</topic><topic>Physics</topic><topic>Planting</topic><topic>R&amp;D</topic><topic>Rainfall</topic><topic>Research &amp; development</topic><topic>Rice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simamora, Elmanani</creatorcontrib><creatorcontrib>Yusardi, Wahyunita</creatorcontrib><creatorcontrib>Mansyur, Abil</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simamora, Elmanani</au><au>Yusardi, Wahyunita</au><au>Mansyur, Abil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1811</volume><issue>1</issue><spage>12075</spage><pages>12075-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The results of data analysis are known from the Agricultural Research and Development Agency that the cropping pattern in Deli Serdang Regency was initially rice-rice with changes in varieties, the cropping pattern changed to the rice-rice-rice pattern. The continuous rice cropping pattern for some time eventually caused new problems, namely the exploitation of rice pests (leafhoppers, Nephotettix Virescens, Orsealia Oryzae) and causing crop failure. This exploitative rice pest is one of the causes of the decline in agricultural productivity in the Deli Serdang Regency. The purpose of this study provides alternative solutions to increase agricultural production in Deli Serdang with modeling cropping pattern most profitable based on the placement of planting time that best suits the needs of rainfall in Deli Serdang that predicted using Neural Network Backpropagation so it can be used as guidelines in the utilization of agricultural land in Deli Serdang Regency. The model Backpropagation best in this study is 12-2-1, with the learning rate best 0.08 and best momentum 0.99 with Mean Square Erro testing is 0.0260. Based on the planting calendar and cropping models obtained from rainfall predictions, the cropping patterns that can be applied in Deli Serdang Regency are modeled, namely the cropping patterns of palawija-rice-rice, palawija-rice-palawija, palawija-palawija-palawija, and palawija-palawija-rice.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1811/1/012075</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-03, Vol.1811 (1), p.12075
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2512915610
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Agricultural land
Agricultural production
Artificial neural networks
Back propagation
Back propagation networks
Data analysis
Modelling
Neural networks
Pests
Physics
Planting
R&D
Rainfall
Research & development
Rice
title Planting Pattern Modeling Based on Rainfall Prediction Using Backpropagation Artificial Neural Network (Case Study: BMKG Rainfall Data, Deli Serdang Regency)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planting%20Pattern%20Modeling%20Based%20on%20Rainfall%20Prediction%20Using%20Backpropagation%20Artificial%20Neural%20Network%20(Case%20Study:%20BMKG%20Rainfall%20Data,%20Deli%20Serdang%20Regency)&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Simamora,%20Elmanani&rft.date=2021-03-01&rft.volume=1811&rft.issue=1&rft.spage=12075&rft.pages=12075-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1811/1/012075&rft_dat=%3Cproquest_cross%3E2512915610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512915610&rft_id=info:pmid/&rfr_iscdi=true