Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem

Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-03, Vol.701 (1), p.12080
Hauptverfasser: Chen, D X, Geng, M F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12080
container_title IOP conference series. Earth and environmental science
container_volume 701
creator Chen, D X
Geng, M F
description Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.
doi_str_mv 10.1088/1755-1315/701/1/012080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512915581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512915581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</originalsourceid><addsrcrecordid>eNo9kF1rwkAQRZfSQq3tXygLfbaZyWaTzaNIPwRLpbbPy2adlFh1dSda_PeNWHyaC3O4XI4Q9wiPCMYkWGg9QIU6KQATTABTMHAheufH5TlDcS1umBcAeZGpsic-pqFZt78Nk3xzzHIU1kxx79pmT3JCjls52-5cJJZjDt8UVtTGxsvh2i0P3LCsQ5SzNvx0wDSGakmrW3FVuyXT3f_ti6_np8_R62Dy_jIeDScDj6WCASnMjMmJTK5rn3qlK8wNZX7uc9SQKcoywLqYp86XnoDqEnyl68oUTlXFXPXFw6l3E8N2R9zaRdjFbhfbVGNaotYGOyo_UT4G5ki13cRm5eLBItijP3tUY4-abOfPoj35U39kUmO3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512915581</pqid></control><display><type>article</type><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Chen, D X ; Geng, M F</creator><creatorcontrib>Chen, D X ; Geng, M F</creatorcontrib><description>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/701/1/012080</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>B spline functions ; Backward facing steps ; Basis functions ; Boundary conditions ; Circular cylinders ; Computational fluid dynamics ; Computer applications ; Conservation ; Divergence ; Finite element method ; Fluid flow ; Incompressible flow ; Least squares ; Mathematical analysis ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.701 (1), p.12080</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, D X</creatorcontrib><creatorcontrib>Geng, M F</creatorcontrib><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><title>IOP conference series. Earth and environmental science</title><description>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</description><subject>B spline functions</subject><subject>Backward facing steps</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Circular cylinders</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Conservation</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kF1rwkAQRZfSQq3tXygLfbaZyWaTzaNIPwRLpbbPy2adlFh1dSda_PeNWHyaC3O4XI4Q9wiPCMYkWGg9QIU6KQATTABTMHAheufH5TlDcS1umBcAeZGpsic-pqFZt78Nk3xzzHIU1kxx79pmT3JCjls52-5cJJZjDt8UVtTGxsvh2i0P3LCsQ5SzNvx0wDSGakmrW3FVuyXT3f_ti6_np8_R62Dy_jIeDScDj6WCASnMjMmJTK5rn3qlK8wNZX7uc9SQKcoywLqYp86XnoDqEnyl68oUTlXFXPXFw6l3E8N2R9zaRdjFbhfbVGNaotYGOyo_UT4G5ki13cRm5eLBItijP3tUY4-abOfPoj35U39kUmO3</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chen, D X</creator><creator>Geng, M F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><author>Chen, D X ; Geng, M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B spline functions</topic><topic>Backward facing steps</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Circular cylinders</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Conservation</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, D X</creatorcontrib><creatorcontrib>Geng, M F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, D X</au><au>Geng, M F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>701</volume><issue>1</issue><spage>12080</spage><pages>12080-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/701/1/012080</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-03, Vol.701 (1), p.12080
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2512915581
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects B spline functions
Backward facing steps
Basis functions
Boundary conditions
Circular cylinders
Computational fluid dynamics
Computer applications
Conservation
Divergence
Finite element method
Fluid flow
Incompressible flow
Least squares
Mathematical analysis
Velocity
Velocity distribution
title Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20Mass%20Conservative%20Least%20Squares%20Isogeometric%20Analysis%20for%20Stokes%20Problem&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Chen,%20D%20X&rft.date=2021-03-01&rft.volume=701&rft.issue=1&rft.spage=12080&rft.pages=12080-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/701/1/012080&rft_dat=%3Cproquest_cross%3E2512915581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512915581&rft_id=info:pmid/&rfr_iscdi=true