Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem
Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The me...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2021-03, Vol.701 (1), p.12080 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12080 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 701 |
creator | Chen, D X Geng, M F |
description | Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation. |
doi_str_mv | 10.1088/1755-1315/701/1/012080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512915581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512915581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</originalsourceid><addsrcrecordid>eNo9kF1rwkAQRZfSQq3tXygLfbaZyWaTzaNIPwRLpbbPy2adlFh1dSda_PeNWHyaC3O4XI4Q9wiPCMYkWGg9QIU6KQATTABTMHAheufH5TlDcS1umBcAeZGpsic-pqFZt78Nk3xzzHIU1kxx79pmT3JCjls52-5cJJZjDt8UVtTGxsvh2i0P3LCsQ5SzNvx0wDSGakmrW3FVuyXT3f_ti6_np8_R62Dy_jIeDScDj6WCASnMjMmJTK5rn3qlK8wNZX7uc9SQKcoywLqYp86XnoDqEnyl68oUTlXFXPXFw6l3E8N2R9zaRdjFbhfbVGNaotYGOyo_UT4G5ki13cRm5eLBItijP3tUY4-abOfPoj35U39kUmO3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512915581</pqid></control><display><type>article</type><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Chen, D X ; Geng, M F</creator><creatorcontrib>Chen, D X ; Geng, M F</creatorcontrib><description>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/701/1/012080</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>B spline functions ; Backward facing steps ; Basis functions ; Boundary conditions ; Circular cylinders ; Computational fluid dynamics ; Computer applications ; Conservation ; Divergence ; Finite element method ; Fluid flow ; Incompressible flow ; Least squares ; Mathematical analysis ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2021-03, Vol.701 (1), p.12080</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Chen, D X</creatorcontrib><creatorcontrib>Geng, M F</creatorcontrib><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><title>IOP conference series. Earth and environmental science</title><description>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</description><subject>B spline functions</subject><subject>Backward facing steps</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Circular cylinders</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Conservation</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kF1rwkAQRZfSQq3tXygLfbaZyWaTzaNIPwRLpbbPy2adlFh1dSda_PeNWHyaC3O4XI4Q9wiPCMYkWGg9QIU6KQATTABTMHAheufH5TlDcS1umBcAeZGpsic-pqFZt78Nk3xzzHIU1kxx79pmT3JCjls52-5cJJZjDt8UVtTGxsvh2i0P3LCsQ5SzNvx0wDSGakmrW3FVuyXT3f_ti6_np8_R62Dy_jIeDScDj6WCASnMjMmJTK5rn3qlK8wNZX7uc9SQKcoywLqYp86XnoDqEnyl68oUTlXFXPXFw6l3E8N2R9zaRdjFbhfbVGNaotYGOyo_UT4G5ki13cRm5eLBItijP3tUY4-abOfPoj35U39kUmO3</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chen, D X</creator><creator>Geng, M F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20210301</creationdate><title>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</title><author>Chen, D X ; Geng, M F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1930-e314886ee865fc2c35b168e4cdc615043e4401f7d2ac9ce0ef90cb5fb87a3b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B spline functions</topic><topic>Backward facing steps</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Circular cylinders</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Conservation</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, D X</creatorcontrib><creatorcontrib>Geng, M F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, D X</au><au>Geng, M F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>701</volume><issue>1</issue><spage>12080</spage><pages>12080-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Conventional least squares finite element method for incompressible flow does not enforce mass conservation in pointwise, i.e. the velocity field is not exactly divergence free. In this paper, we present a pointwise mass conservative least squares isogeometric analysis for the Stokes problem. The method utilizes high order smooth basis functions generated from non-uniform rational B-spline (NURBS). Pointwise divergence free velocity field is defined using stream function on each patch of computational domain. Velocity boundary conditions and cross patch continuity are enforced in least square sense. Numerical results are presented for flow past a large circular cylinder in a channel and flow over a backward facing step. The results show improvements on local and global mass conservation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/701/1/012080</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2021-03, Vol.701 (1), p.12080 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2512915581 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra |
subjects | B spline functions Backward facing steps Basis functions Boundary conditions Circular cylinders Computational fluid dynamics Computer applications Conservation Divergence Finite element method Fluid flow Incompressible flow Least squares Mathematical analysis Velocity Velocity distribution |
title | Pointwise Mass Conservative Least Squares Isogeometric Analysis for Stokes Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20Mass%20Conservative%20Least%20Squares%20Isogeometric%20Analysis%20for%20Stokes%20Problem&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Chen,%20D%20X&rft.date=2021-03-01&rft.volume=701&rft.issue=1&rft.spage=12080&rft.pages=12080-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/701/1/012080&rft_dat=%3Cproquest_cross%3E2512915581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512915581&rft_id=info:pmid/&rfr_iscdi=true |