Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations

Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2021-01, Vol.57 (3), p.391-407
Hauptverfasser: Evstigneev, N M, Ryabkov, O I, Shul’min D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 3
container_start_page 391
container_title Differential equations
container_volume 57
creator Evstigneev, N M
Ryabkov, O I
Shul’min D A
description Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.
doi_str_mv 10.1134/S0012266121030113
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2512766003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512766003</sourcerecordid><originalsourceid>FETCH-proquest_journals_25127660033</originalsourceid><addsrcrecordid>eNqNjk1OwzAQhS0EEuHnAOwssQ6MY5qWZVWCygJRKUEsKyuZNA6pnY4dRE7FFXGAA7AazfvevDeMXQm4EULe3eYAIknSVCQCJATpiEUihUUsYSGPWTTheOKn7My5FgDu52IWsa9Xh9zWPG9Im3f-Rqrvtdnx2hJ_Mh7pQ3W8UGMX9mdbYee04ctuZ0n7Zu-m05Xd90NwxkvntPNY8Q1ZWwfiG-TZ56SZ8qdlg6RtpUtekGqx9CEFp8B8DJ7ftBeqtFE08gdd10hovA4fZIdBeW2Nu2AnteocXv7Nc3b9mBWrddyTPQzo_La1A5mAtslMJPM0BZDyf65v8ndpKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512766003</pqid></control><display><type>article</type><title>Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations</title><source>SpringerLink Journals</source><creator>Evstigneev, N M ; Ryabkov, O I ; Shul’min D A</creator><creatorcontrib>Evstigneev, N M ; Ryabkov, O I ; Shul’min D A</creatorcontrib><description>Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266121030113</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Differential equations ; Mathematical models ; Mathematics ; Ordinary differential equations ; Packaging ; Shrink wrapping</subject><ispartof>Differential equations, 2021-01, Vol.57 (3), p.391-407</ispartof><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Evstigneev, N M</creatorcontrib><creatorcontrib>Ryabkov, O I</creatorcontrib><creatorcontrib>Shul’min D A</creatorcontrib><title>Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations</title><title>Differential equations</title><description>Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Packaging</subject><subject>Shrink wrapping</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjk1OwzAQhS0EEuHnAOwssQ6MY5qWZVWCygJRKUEsKyuZNA6pnY4dRE7FFXGAA7AazfvevDeMXQm4EULe3eYAIknSVCQCJATpiEUihUUsYSGPWTTheOKn7My5FgDu52IWsa9Xh9zWPG9Im3f-Rqrvtdnx2hJ_Mh7pQ3W8UGMX9mdbYee04ctuZ0n7Zu-m05Xd90NwxkvntPNY8Q1ZWwfiG-TZ56SZ8qdlg6RtpUtekGqx9CEFp8B8DJ7ftBeqtFE08gdd10hovA4fZIdBeW2Nu2AnteocXv7Nc3b9mBWrddyTPQzo_La1A5mAtslMJPM0BZDyf65v8ndpKA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Evstigneev, N M</creator><creator>Ryabkov, O I</creator><creator>Shul’min D A</creator><general>Springer Nature B.V</general><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations</title><author>Evstigneev, N M ; Ryabkov, O I ; Shul’min D A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25127660033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Packaging</topic><topic>Shrink wrapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evstigneev, N M</creatorcontrib><creatorcontrib>Ryabkov, O I</creatorcontrib><creatorcontrib>Shul’min D A</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evstigneev, N M</au><au>Ryabkov, O I</au><au>Shul’min D A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations</atitle><jtitle>Differential equations</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>57</volume><issue>3</issue><spage>391</spage><epage>407</epage><pages>391-407</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>Using interval Taylor models (TM), we construct algorithms for the computer-assisted proof of the existence of periodic trajectories in systems of ordinary differential equations (ODEs). Although TMs allow one to construct guaranteed estimates for families of solutions of systems of ODEs when integrating ODEs over large time intervals, the interval residual included in the TMs begins to grow exponentially and becomes the dominant part of the estimate of the solution pencil, making it practically unusable. To eliminate this deficiency, the creators of the TM—K. Makino and M. Berz—proposed the idea of so-called “shrink wrapping.” We formalize the original algorithm within the framework of the TM definitions we have adopted and propose our own version of the “shrink wrapping,” more accurately adapted to the problem of the computer-aided proof of the existence of periodic trajectories.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1134/S0012266121030113</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2021-01, Vol.57 (3), p.391-407
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2512766003
source SpringerLink Journals
subjects Algorithms
Differential equations
Mathematical models
Mathematics
Ordinary differential equations
Packaging
Shrink wrapping
title Use of Shrink Wrapping for Interval Taylor Modelsin Algorithms of Computer-Assisted Proofof the Existence of Periodic Trajectoriesin Systems of Ordinary Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Shrink%20Wrapping%20for%20Interval%20Taylor%20Modelsin%20Algorithms%20of%20Computer-Assisted%20Proofof%20the%20Existence%20of%20Periodic%20Trajectoriesin%20Systems%20of%20Ordinary%20Differential%20Equations&rft.jtitle=Differential%20equations&rft.au=Evstigneev,%20N%20M&rft.date=2021-01-01&rft.volume=57&rft.issue=3&rft.spage=391&rft.epage=407&rft.pages=391-407&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266121030113&rft_dat=%3Cproquest%3E2512766003%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512766003&rft_id=info:pmid/&rfr_iscdi=true