Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor
Owing to the advantages of 3-D printable stack, scalability and low cost solution state production, polymer-based resistive memory devices have been identified as the promising alternative for conventional oxide technology. Resistive memory devices based on the redox switch mechanism is particularly...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-04, Vol.13 (14), p.6759-6763 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6763 |
---|---|
container_issue | 14 |
container_start_page | 6759 |
container_title | Nanoscale |
container_volume | 13 |
creator | Barman, Biswajit K Ghosh, Nani Gopal Giri, Indrajit Kumar, Chandan Zade, Sanjio S Vijayaraghavan, Ratheesh K |
description | Owing to the advantages of 3-D printable stack, scalability and low cost solution state production, polymer-based resistive memory devices have been identified as the promising alternative for conventional oxide technology. Resistive memory devices based on the redox switch mechanism is particularly found to yield high precision with respect to the operational voltages. Reversible non-volatile resistive state switching was realized with high device yield (>80%), with a redox-active chemical entity conjugated to the polymeric semiconductor, and the control experiments with the model compound confirmed the imperative role of the redox-active anthraquinone center in the polymeric backbone. Highly uniform nanodomains and the trap free layers excluded the possibilities of other known switching mechanisms. Optical studies and the molecular modelling data assert the presence of strong charge transfer characteristics upon optical excitation due to the insertion of the anthraquinone unit, which was detrimental in exhibiting bistable conductive states in electrical bias as well.
Incorporating a redox active anthraquinone acceptor group to a polymer semiconductor is found to induce electrical bistability. Resistive memory devices based on the redox switch mechanism is thus materialized in a sandwich device. |
doi_str_mv | 10.1039/d1nr00960e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2512754621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512754621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-8fe67a990c3cf535fb0a89eca5b2317c79c1882508a8513d5e0bb4454a9a103</originalsourceid><addsrcrecordid>eNpd0d9LwzAQB_Agis4fL74rAV9EmCZN0yaPMqcOREF9L9f0KhltM5NU3H9v53SCT3dwH47je4Qcc3bJmdBXFe88YzpjuEVGCUvZWIg82d70WbpH9kOYM5ZpkYldsieEUjLN8xEpZp1xfuE8RNu9UaAeK_dJwUT7gRS7aOOSRkchRrAdxQZN9NZAQ0sbIpS2WYFhAnThmmWLngZsrXFd1Zvo_CHZqaEJePRTD8jL7fR1cj9-eLqbTa4fxkZoFseqxiwHrZkRppZC1iUDpdGALBPBc5Nrw5VKJFOgJBeVRFaWaSpT0DBkcEDO11sX3r33GGLR2mCwaaBD14cikTxTQmdcDvTsH5273nfDbSuV5DLNEj6oi7Uy3oXgsS4W3rbglwVnxSr04oY_Pn-HPh3w6c_Kvmyx2tDflAdwsgY-mM3072viC5w9hsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512754621</pqid></control><display><type>article</type><title>Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor</title><source>Royal Society Of Chemistry Journals</source><creator>Barman, Biswajit K ; Ghosh, Nani Gopal ; Giri, Indrajit ; Kumar, Chandan ; Zade, Sanjio S ; Vijayaraghavan, Ratheesh K</creator><creatorcontrib>Barman, Biswajit K ; Ghosh, Nani Gopal ; Giri, Indrajit ; Kumar, Chandan ; Zade, Sanjio S ; Vijayaraghavan, Ratheesh K</creatorcontrib><description>Owing to the advantages of 3-D printable stack, scalability and low cost solution state production, polymer-based resistive memory devices have been identified as the promising alternative for conventional oxide technology. Resistive memory devices based on the redox switch mechanism is particularly found to yield high precision with respect to the operational voltages. Reversible non-volatile resistive state switching was realized with high device yield (>80%), with a redox-active chemical entity conjugated to the polymeric semiconductor, and the control experiments with the model compound confirmed the imperative role of the redox-active anthraquinone center in the polymeric backbone. Highly uniform nanodomains and the trap free layers excluded the possibilities of other known switching mechanisms. Optical studies and the molecular modelling data assert the presence of strong charge transfer characteristics upon optical excitation due to the insertion of the anthraquinone unit, which was detrimental in exhibiting bistable conductive states in electrical bias as well.
Incorporating a redox active anthraquinone acceptor group to a polymer semiconductor is found to induce electrical bistability. Resistive memory devices based on the redox switch mechanism is thus materialized in a sandwich device.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr00960e</identifier><identifier>PMID: 33885477</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anthraquinones ; Bistability ; Charge transfer ; Memory devices ; Polymers ; Switching ; Three dimensional printing</subject><ispartof>Nanoscale, 2021-04, Vol.13 (14), p.6759-6763</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-8fe67a990c3cf535fb0a89eca5b2317c79c1882508a8513d5e0bb4454a9a103</citedby><cites>FETCH-LOGICAL-c390t-8fe67a990c3cf535fb0a89eca5b2317c79c1882508a8513d5e0bb4454a9a103</cites><orcidid>0000-0001-9507-6080 ; 0000-0001-8902-257X ; 0000-0001-8952-8087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33885477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barman, Biswajit K</creatorcontrib><creatorcontrib>Ghosh, Nani Gopal</creatorcontrib><creatorcontrib>Giri, Indrajit</creatorcontrib><creatorcontrib>Kumar, Chandan</creatorcontrib><creatorcontrib>Zade, Sanjio S</creatorcontrib><creatorcontrib>Vijayaraghavan, Ratheesh K</creatorcontrib><title>Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Owing to the advantages of 3-D printable stack, scalability and low cost solution state production, polymer-based resistive memory devices have been identified as the promising alternative for conventional oxide technology. Resistive memory devices based on the redox switch mechanism is particularly found to yield high precision with respect to the operational voltages. Reversible non-volatile resistive state switching was realized with high device yield (>80%), with a redox-active chemical entity conjugated to the polymeric semiconductor, and the control experiments with the model compound confirmed the imperative role of the redox-active anthraquinone center in the polymeric backbone. Highly uniform nanodomains and the trap free layers excluded the possibilities of other known switching mechanisms. Optical studies and the molecular modelling data assert the presence of strong charge transfer characteristics upon optical excitation due to the insertion of the anthraquinone unit, which was detrimental in exhibiting bistable conductive states in electrical bias as well.
Incorporating a redox active anthraquinone acceptor group to a polymer semiconductor is found to induce electrical bistability. Resistive memory devices based on the redox switch mechanism is thus materialized in a sandwich device.</description><subject>Anthraquinones</subject><subject>Bistability</subject><subject>Charge transfer</subject><subject>Memory devices</subject><subject>Polymers</subject><subject>Switching</subject><subject>Three dimensional printing</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LwzAQB_Agis4fL74rAV9EmCZN0yaPMqcOREF9L9f0KhltM5NU3H9v53SCT3dwH47je4Qcc3bJmdBXFe88YzpjuEVGCUvZWIg82d70WbpH9kOYM5ZpkYldsieEUjLN8xEpZp1xfuE8RNu9UaAeK_dJwUT7gRS7aOOSRkchRrAdxQZN9NZAQ0sbIpS2WYFhAnThmmWLngZsrXFd1Zvo_CHZqaEJePRTD8jL7fR1cj9-eLqbTa4fxkZoFseqxiwHrZkRppZC1iUDpdGALBPBc5Nrw5VKJFOgJBeVRFaWaSpT0DBkcEDO11sX3r33GGLR2mCwaaBD14cikTxTQmdcDvTsH5273nfDbSuV5DLNEj6oi7Uy3oXgsS4W3rbglwVnxSr04oY_Pn-HPh3w6c_Kvmyx2tDflAdwsgY-mM3072viC5w9hsw</recordid><startdate>20210414</startdate><enddate>20210414</enddate><creator>Barman, Biswajit K</creator><creator>Ghosh, Nani Gopal</creator><creator>Giri, Indrajit</creator><creator>Kumar, Chandan</creator><creator>Zade, Sanjio S</creator><creator>Vijayaraghavan, Ratheesh K</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9507-6080</orcidid><orcidid>https://orcid.org/0000-0001-8902-257X</orcidid><orcidid>https://orcid.org/0000-0001-8952-8087</orcidid></search><sort><creationdate>20210414</creationdate><title>Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor</title><author>Barman, Biswajit K ; Ghosh, Nani Gopal ; Giri, Indrajit ; Kumar, Chandan ; Zade, Sanjio S ; Vijayaraghavan, Ratheesh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-8fe67a990c3cf535fb0a89eca5b2317c79c1882508a8513d5e0bb4454a9a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anthraquinones</topic><topic>Bistability</topic><topic>Charge transfer</topic><topic>Memory devices</topic><topic>Polymers</topic><topic>Switching</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barman, Biswajit K</creatorcontrib><creatorcontrib>Ghosh, Nani Gopal</creatorcontrib><creatorcontrib>Giri, Indrajit</creatorcontrib><creatorcontrib>Kumar, Chandan</creatorcontrib><creatorcontrib>Zade, Sanjio S</creatorcontrib><creatorcontrib>Vijayaraghavan, Ratheesh K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barman, Biswajit K</au><au>Ghosh, Nani Gopal</au><au>Giri, Indrajit</au><au>Kumar, Chandan</au><au>Zade, Sanjio S</au><au>Vijayaraghavan, Ratheesh K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-04-14</date><risdate>2021</risdate><volume>13</volume><issue>14</issue><spage>6759</spage><epage>6763</epage><pages>6759-6763</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Owing to the advantages of 3-D printable stack, scalability and low cost solution state production, polymer-based resistive memory devices have been identified as the promising alternative for conventional oxide technology. Resistive memory devices based on the redox switch mechanism is particularly found to yield high precision with respect to the operational voltages. Reversible non-volatile resistive state switching was realized with high device yield (>80%), with a redox-active chemical entity conjugated to the polymeric semiconductor, and the control experiments with the model compound confirmed the imperative role of the redox-active anthraquinone center in the polymeric backbone. Highly uniform nanodomains and the trap free layers excluded the possibilities of other known switching mechanisms. Optical studies and the molecular modelling data assert the presence of strong charge transfer characteristics upon optical excitation due to the insertion of the anthraquinone unit, which was detrimental in exhibiting bistable conductive states in electrical bias as well.
Incorporating a redox active anthraquinone acceptor group to a polymer semiconductor is found to induce electrical bistability. Resistive memory devices based on the redox switch mechanism is thus materialized in a sandwich device.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33885477</pmid><doi>10.1039/d1nr00960e</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9507-6080</orcidid><orcidid>https://orcid.org/0000-0001-8902-257X</orcidid><orcidid>https://orcid.org/0000-0001-8952-8087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-04, Vol.13 (14), p.6759-6763 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2512754621 |
source | Royal Society Of Chemistry Journals |
subjects | Anthraquinones Bistability Charge transfer Memory devices Polymers Switching Three dimensional printing |
title | Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20a%20redox%20active%20entity%20to%20attain%20electrical%20bistability%20in%20a%20polymer%20semiconductor&rft.jtitle=Nanoscale&rft.au=Barman,%20Biswajit%20K&rft.date=2021-04-14&rft.volume=13&rft.issue=14&rft.spage=6759&rft.epage=6763&rft.pages=6759-6763&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr00960e&rft_dat=%3Cproquest_rsc_p%3E2512754621%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512754621&rft_id=info:pmid/33885477&rfr_iscdi=true |