Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes
This study presents a novel strategy that employs quantitative structure–activity relationship models for nanomaterials (Nano‐QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-04, Vol.17 (15), p.e2003465-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e2003465 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Jagiello, Karolina Halappanavar, Sabina Rybińska‐Fryca, Anna Willliams, Andrew Vogel, Ulla Puzyn, Tomasz |
description | This study presents a novel strategy that employs quantitative structure–activity relationship models for nanomaterials (Nano‐QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways “agranulocyte adhesion and diapedesis,” “granulocyte adhesion and diapedesis,” and “acute phase signaling,” that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ‐values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
The delivered adverse outcome pathway (AOP) anchored structure‐activity relationships model (Nano‐QSAR) provides insights into predicting the pulmonary pathology induced by carbon nanotubes. A grouping strategy based on nanotubes’ aspect ratio and transcriptomic pathway associated genes is proposed. It shows how AOP framework can help guide Nano‐QSAR modelling efforts; conversely, outcome of QSAR can aid in refining certain aspects of AOP. |
doi_str_mv | 10.1002/smll.202003465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512624928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512624928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-e8c5e4b29c2f0b8c9352b9dbe58f0f545f79a52bc04bf9667c135e10b06d97a03</originalsourceid><addsrcrecordid>eNqFkctOGzEYhS3Uqty6ZYksdZ3U9own42WIuEQKJeKyHtkeDxh57OALaHY8AhI8IU9So9B0yeq_6DvH8n8AOMBojBEiv0NvzJggglBRVnQL7OAKF6OqJuzbpsdoG-yGcJ8ZTMrJD7BdFDRLWLUD3q49t0F6vYqu1zK8P78c8aBayG0LpxfLPM9t53yfV1fRJxmTV-_Pr1MZ9aOOA7xUhkftbLjTqwCjg0uvWi0jXCbTO8v9AJc83jnjbgc4t22S2UkM8DyZqJ-4MXmccS-chX-4dTEJFfbB946boH5-1j1wc3J8PTsbLS5O57PpYiRLXNCRqiVVpSBMkg6JWrKCEsFaoWjdoY6WtJswnlcSlaJjVTWRWaUwEqhq2YSjYg_8WvuuvHtIKsTm3iVv85MNoZhUpGSkztR4TUnvQvCqa1Ze9_ljDUbNRwjNRwjNJoQsOPy0TSLfbYP_u3oG2Bp40kYNX9g1V-eLxX_zv9gDmdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512624928</pqid></control><display><type>article</type><title>Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jagiello, Karolina ; Halappanavar, Sabina ; Rybińska‐Fryca, Anna ; Willliams, Andrew ; Vogel, Ulla ; Puzyn, Tomasz</creator><creatorcontrib>Jagiello, Karolina ; Halappanavar, Sabina ; Rybińska‐Fryca, Anna ; Willliams, Andrew ; Vogel, Ulla ; Puzyn, Tomasz</creatorcontrib><description>This study presents a novel strategy that employs quantitative structure–activity relationship models for nanomaterials (Nano‐QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways “agranulocyte adhesion and diapedesis,” “granulocyte adhesion and diapedesis,” and “acute phase signaling,” that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ‐values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
The delivered adverse outcome pathway (AOP) anchored structure‐activity relationships model (Nano‐QSAR) provides insights into predicting the pulmonary pathology induced by carbon nanotubes. A grouping strategy based on nanotubes’ aspect ratio and transcriptomic pathway associated genes is proposed. It shows how AOP framework can help guide Nano‐QSAR modelling efforts; conversely, outcome of QSAR can aid in refining certain aspects of AOP.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202003465</identifier><identifier>PMID: 33502096</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adhesion ; Aspect ratio ; Bioinformatics ; Fibrosis ; Lungs ; Modelling ; Multi wall carbon nanotubes ; multiwalled carbon nanotubes ; NanoAOPs ; Nanomaterials ; Nanotechnology ; nanotoxicity ; Nano‐QSAR ; transcriptomics</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2003465-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-e8c5e4b29c2f0b8c9352b9dbe58f0f545f79a52bc04bf9667c135e10b06d97a03</citedby><cites>FETCH-LOGICAL-c4135-e8c5e4b29c2f0b8c9352b9dbe58f0f545f79a52bc04bf9667c135e10b06d97a03</cites><orcidid>0000-0001-9985-5081 ; 0000-0002-2730-6873 ; 0000-0001-6807-1524 ; 0000-0001-6283-237X ; 0000-0003-0449-8339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202003465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202003465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33502096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagiello, Karolina</creatorcontrib><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Rybińska‐Fryca, Anna</creatorcontrib><creatorcontrib>Willliams, Andrew</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><creatorcontrib>Puzyn, Tomasz</creatorcontrib><title>Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>This study presents a novel strategy that employs quantitative structure–activity relationship models for nanomaterials (Nano‐QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways “agranulocyte adhesion and diapedesis,” “granulocyte adhesion and diapedesis,” and “acute phase signaling,” that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ‐values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
The delivered adverse outcome pathway (AOP) anchored structure‐activity relationships model (Nano‐QSAR) provides insights into predicting the pulmonary pathology induced by carbon nanotubes. A grouping strategy based on nanotubes’ aspect ratio and transcriptomic pathway associated genes is proposed. It shows how AOP framework can help guide Nano‐QSAR modelling efforts; conversely, outcome of QSAR can aid in refining certain aspects of AOP.</description><subject>Adhesion</subject><subject>Aspect ratio</subject><subject>Bioinformatics</subject><subject>Fibrosis</subject><subject>Lungs</subject><subject>Modelling</subject><subject>Multi wall carbon nanotubes</subject><subject>multiwalled carbon nanotubes</subject><subject>NanoAOPs</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>nanotoxicity</subject><subject>Nano‐QSAR</subject><subject>transcriptomics</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctOGzEYhS3Uqty6ZYksdZ3U9own42WIuEQKJeKyHtkeDxh57OALaHY8AhI8IU9So9B0yeq_6DvH8n8AOMBojBEiv0NvzJggglBRVnQL7OAKF6OqJuzbpsdoG-yGcJ8ZTMrJD7BdFDRLWLUD3q49t0F6vYqu1zK8P78c8aBayG0LpxfLPM9t53yfV1fRJxmTV-_Pr1MZ9aOOA7xUhkftbLjTqwCjg0uvWi0jXCbTO8v9AJc83jnjbgc4t22S2UkM8DyZqJ-4MXmccS-chX-4dTEJFfbB946boH5-1j1wc3J8PTsbLS5O57PpYiRLXNCRqiVVpSBMkg6JWrKCEsFaoWjdoY6WtJswnlcSlaJjVTWRWaUwEqhq2YSjYg_8WvuuvHtIKsTm3iVv85MNoZhUpGSkztR4TUnvQvCqa1Ze9_ljDUbNRwjNRwjNJoQsOPy0TSLfbYP_u3oG2Bp40kYNX9g1V-eLxX_zv9gDmdU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Jagiello, Karolina</creator><creator>Halappanavar, Sabina</creator><creator>Rybińska‐Fryca, Anna</creator><creator>Willliams, Andrew</creator><creator>Vogel, Ulla</creator><creator>Puzyn, Tomasz</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9985-5081</orcidid><orcidid>https://orcid.org/0000-0002-2730-6873</orcidid><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0001-6283-237X</orcidid><orcidid>https://orcid.org/0000-0003-0449-8339</orcidid></search><sort><creationdate>20210401</creationdate><title>Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes</title><author>Jagiello, Karolina ; Halappanavar, Sabina ; Rybińska‐Fryca, Anna ; Willliams, Andrew ; Vogel, Ulla ; Puzyn, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-e8c5e4b29c2f0b8c9352b9dbe58f0f545f79a52bc04bf9667c135e10b06d97a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesion</topic><topic>Aspect ratio</topic><topic>Bioinformatics</topic><topic>Fibrosis</topic><topic>Lungs</topic><topic>Modelling</topic><topic>Multi wall carbon nanotubes</topic><topic>multiwalled carbon nanotubes</topic><topic>NanoAOPs</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>nanotoxicity</topic><topic>Nano‐QSAR</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagiello, Karolina</creatorcontrib><creatorcontrib>Halappanavar, Sabina</creatorcontrib><creatorcontrib>Rybińska‐Fryca, Anna</creatorcontrib><creatorcontrib>Willliams, Andrew</creatorcontrib><creatorcontrib>Vogel, Ulla</creatorcontrib><creatorcontrib>Puzyn, Tomasz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagiello, Karolina</au><au>Halappanavar, Sabina</au><au>Rybińska‐Fryca, Anna</au><au>Willliams, Andrew</au><au>Vogel, Ulla</au><au>Puzyn, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>15</issue><spage>e2003465</spage><epage>n/a</epage><pages>e2003465-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>This study presents a novel strategy that employs quantitative structure–activity relationship models for nanomaterials (Nano‐QSAR) for predicting transcriptomic pathway level response using lung tissue inflammation, an essential key event (KEs) in the existing adverse outcome pathway (AOP) for lung fibrosis, as a model response. Transcriptomic profiles of mouse lungs exposed to ten different multiwalled carbon nanotubes (MWCNTs) are analyzed using statistical and bioinformatics tools. Three pathways “agranulocyte adhesion and diapedesis,” “granulocyte adhesion and diapedesis,” and “acute phase signaling,” that (1) are commonly perturbed across the MWCNTs panel, (2) show dose response (Benchmark dose, BMDs), and (3) are anchored to the KEs identified in the lung fibrosis AOP, are considered in modelling. The three pathways are associated with tissue inflammation. The results show that the aspect ratio (κ) of MWCNTs is directly correlated with the pathway BMDs. The study establishes a methodology for QSAR construction based on canonical pathways and proposes a MWCNTs grouping strategy based on the κ‐values of the specific pathway associated genes. Finally, the study shows how the AOP framework can help guide QSAR modelling efforts; conversely, the outcome of the QSAR modelling can aid in refining certain aspects of the AOP in question (here, lung fibrosis).
The delivered adverse outcome pathway (AOP) anchored structure‐activity relationships model (Nano‐QSAR) provides insights into predicting the pulmonary pathology induced by carbon nanotubes. A grouping strategy based on nanotubes’ aspect ratio and transcriptomic pathway associated genes is proposed. It shows how AOP framework can help guide Nano‐QSAR modelling efforts; conversely, outcome of QSAR can aid in refining certain aspects of AOP.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33502096</pmid><doi>10.1002/smll.202003465</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9985-5081</orcidid><orcidid>https://orcid.org/0000-0002-2730-6873</orcidid><orcidid>https://orcid.org/0000-0001-6807-1524</orcidid><orcidid>https://orcid.org/0000-0001-6283-237X</orcidid><orcidid>https://orcid.org/0000-0003-0449-8339</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-04, Vol.17 (15), p.e2003465-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2512624928 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adhesion Aspect ratio Bioinformatics Fibrosis Lungs Modelling Multi wall carbon nanotubes multiwalled carbon nanotubes NanoAOPs Nanomaterials Nanotechnology nanotoxicity Nano‐QSAR transcriptomics |
title | Transcriptomics‐Based and AOP‐Informed Structure–Activity Relationships to Predict Pulmonary Pathology Induced by Multiwalled Carbon Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptomics%E2%80%90Based%20and%20AOP%E2%80%90Informed%20Structure%E2%80%93Activity%20Relationships%20to%20Predict%20Pulmonary%20Pathology%20Induced%20by%20Multiwalled%20Carbon%20Nanotubes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jagiello,%20Karolina&rft.date=2021-04-01&rft.volume=17&rft.issue=15&rft.spage=e2003465&rft.epage=n/a&rft.pages=e2003465-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202003465&rft_dat=%3Cproquest_cross%3E2512624928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512624928&rft_id=info:pmid/33502096&rfr_iscdi=true |